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Chapter 1
Introduction
Synthetic Aperture Radar (SAR) has become an invaluable information resource for both
military and civilian applications. The collection of SAR images by various platforms (e.g.
Global Hawk, NASA/JPL AIRSAR, etc.) and various missions for multiple purposes (e.g.
reconnaissance, terrain mapping, etc.) has lead to vast amount of data over wide surveillance
areas . The pixel–to–eye ratio is simply too high for human analysts to rapidly sift through
massive volumes of sensor data and yield engagement decisions quickly and precisely.
Effective automatic target recognition (ATR) algorithms to process this growing mountain of
information are clearly needed.

SAR ATR is a very complex problem that still has not been mastered. SAR ATR is
difficult largely due to the fact that SAR imagery exhibits large variability. SAR imagery
is a function of many variables called operating conditions (OC’s) that can be subdivided
into three large groups. The three main OC’s are target, environmental, and sensor. Target
operating conditions deal with the properties of the target that can effect the formation
of the SAR image and includes but is not limited to configuration, articulation, different
target classes, and level of damages. Environmental operating conditions deal with the
properties of the environment that can effect the formation of the SAR image and includes
but is not limited to layover, obstruction, background, adjacency, camouflage, clutters and
weather. Sensor operating conditions deal with the properties of the sensor that can effect the
formation of the SAR image and includes but is not limited to depression angle, polarization,
frequency, and resolution. In the development and testing of SAR ATR algorithms to date
the effects of target, and environmental OC’s have been greatly explored.

In 1999, Timothy D. Ross wrote ‘‘Variability in SAR images due to sensing arrangement
is no less important than that due to target or environmental variability. We have given this
little though to date,’’ and three years later little has changed [36] . SAR ATR algorithms
generally use MSTAR data to train and test. Unfortunately MSTAR data typically represents
only a single point in the sensor OC dimension. All the MSTAR data was collected using
the same sensor having the same polarization, frequency, and resolution. The lack of
variation among these parameters makes determining their effects on the performance of
SAR ATR algorithms using MSTAR data alone impossible [36] . The cost and complication
of collecting data with different sensor OCs seems to have kept any real progress in this area.
Sensor OC’s represent all of the ways that the properties of the radar sensor can affect the
outcome of a SAR image. To completely characterize all of the properties of a sensor which
has an effect on the outcome of a SAR image would be far too extensive for this one study.
However the most important sensor properties can be characterized. The sensor parameters,
which have some of the largest effects on the formation of the image, include depression
angle, squint angle, frequency, PRF, polarization, single/multi-look, sensor abnormalities,
noise level, and strip vs spot.

The ultimate objective of this study is to develop a road map for studying various effects
of varying sensor OC’s on the performance of SAR ATR algorithms. To achieve this goal,
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we proposed first to conduct literature search to see how much had been done in sensor
OC condition study. We also proposed to seek alternative sources or ways to generate SAR
data related to variations of sensor OC’s to support SAR parametric study in the future. In
addition, we proposed to allocate and implement a number of baseline ATR algorithms for
the evaluation of their performance under the variation of sensor OC’s. In this document the
results of our work are presented. After a brief introduction of SAR sensor parameters and
their functions in various SAR image formation and enhancement algorithms, the results of
a literature search done to understand the variations of sensor OC’s in ATR performance are
presented. Then the results of a literature search done to identity other potential sources of
SAR data are presented. In order to establish a SAR parametric study paradigm, we have
reviewed a number of ATR algorithms and implemented three baseline ATR algorithms for
this purpose. We have also summarized our initial work in using Xpatch to generate SAR
data with various sensor OC’s. Finally a preliminary experiment is presented that shows the
effects of the variation of a selected sensor OC (depression angle) on various SAR ATR
baseline algorithms. Our research has also established an experimental paradigm for SAR
parametric study.
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Chapter 2
SAR Parametric Study Literature Review
The literature search on the SAR ATR and parametric studies covers past fifteen years. This
chapter of the report will present the review of the literature search conducted to study sensor
OC’s and SAR ATR. The simple goal of this research is to understand how the variation of
sensor OC’s effect SAR ATR algorithms by studying public released research. The literature
search in this area turned out to provide little understanding of how variation of sensor OC’s
affected the performance of SAR ATR algorithms. What little unclassified literature there
was on sensor OC’s seem to mostly deal with the general problem of how sensor parameter
variation effected the formation of SAR imagery. Since almost all SAR ATR algorithms
use either the image directly, or features generated from the image, the study of how sensor
parameters affect the SAR image should provide valuable insight into the problem. In order
to explain all the research papers and their implications on SAR parametric study, we will
first briefly review the SAR imaging principle and methods. This brief review serves two
purposes one is to let reader know where each sensor parameter fits in SAR image processing
and the other is to introduce and unify the various sensor notations that will appear in the rest
of the documentation. After the brief review, the research works that address the variations
and effects of sensor parameters over SAR images will be explained.

2.1 SAR Image Principle and Processing — a Brief

One of the most important attributes of a radar system is its ability to resolve objects.
The determining factor in the resolution of objects in a classical system is the length of
the viewing aperture. The method of Synthetic aperture radar is a technique of creating
a large aperture by using a very small physical radar and moving it in a straight path
taking measurements in every position. How much of the synthetic aperture is used when
imaging a scene turns out to be an important sensor parameter. The synthetic aperture can
be constructed by either using the entire synthetic aperture to image a small target scene by
steering the radar called spotlighting or use the synthetic aperture to image a target scene
whose length is about the same as the length of the synthetic aperture called strip map. The
spotlight SAR image using the entire synthetic aperture length to image the relatively small
target area produces extremely high resolution, compared to strip map SAR. In order to
understand the effects of Spot and Strip SAR, the mathematical models representing these
respective processes must be developed. The mathematical models that will be developed
in the following sections for Spot and Strip map SAR is basically a summation of the basic
concepts covered in the book ‘‘Synthetic Aperture Radar: Signal Processing with MATLAB
Algorithms’’ [44] .

The mathematical model describing Spotlight SAR will be developed first. The
development will go through range imaging, cross range imaging, and finally through the
2-D SAR imaging for the Spotlight case. The general concept of range imaging of an object
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Section 2.1 SAR Image Principle and Processing — a Brief

is based on the idea of echo location. Echo location is based on the fact if a wave of energy
(microwave or sound) is directed towards a series of objects, the objects will tend to reflect
back some of that energy towards the sender. The larger objects will tend to reflect back
more energy than smaller objects, this property is known as the targets reflectivity, which can
also be refereed to as the radar cross section. The reflected waves from the objects further
away will take a longer time to reach the receiver than the reflected waves from the closer
objects. This property can be used to generate the distance from the target to the radar, which
is also called the target range.

2.1.1 Range Imaging

In order to develop all of the mathematical equations for range imaging, we need to develop
a model for the system. Suppose we have a set of N targets that are all at the same fixed
cross range, but at different ranges. The cross range will be denoted as the variable y and
will be parallel to the flight path of the plane. The range will be denoted as the variable x
and will be perpendicular to the flight path of the plane. The radar cross section (RCS) for
each object will be denoted by the reflectivity variable σ.

The radar will be considered to be at a position fixed such that the boresight of the
radar is at the same cross range of the objects. The area of the range domain that the radar
illuminates is called the Radar Swath. The center of the radar swath is designated by Xc,
which can be determined by the center of mass of the target area,

Xc =

S
n xn|σn|2S
n |σn|2

(2.1)

where xn and σn are the position and radar cross section for the nth scatter respectively.
The support band of the radar swath is given by xn ∈ [Xc −Xo, Xc +Xo]. The Radar
swath is dictated by the radiation pattern of the individual radar with a target area size of
2Xo. Using the model above and considering a radar with infinite bandwidth, the ideal target
function can now be constructed as

f0(x) =
[
n

σnδ(x− xn) (2.2)

where x = ct
2 is a linear transform of time (c is wave propagation speed 3× 108 m/s). Notice

that f0( ct2 ) has infinitely fine range resolution.
Now lets develop range imaging through the idea of radar frequency variation. First we

illuminate the one-dimensional target area with a radar pulse represented by p(t). The echo
signal received by the radar can be represented by the function

s(t) =
[
n

σnp(t− 2xn
c
) (2.3)

where 2xn
c is the amount of time for the radar pulse to travel out to the nth target and back.

4



Chapter 2 SAR Parametric Study Literature Review

Using the fact that we can represent the echoed signal as

s(t) = f0(
ct

2
) ∗ p(t) (2.4)

where ∗ denotes linear convolution.
This is truly a simplified model of the radar problem. The true physics characterizing the

scattering of the electromagnetic waves that occur when an object is encountered may point
out that this model is useless. It turns out that errors like quantization noise, thermal additive
noise, and multiplication noise are larger sources of error.

There are several ways to reconstruct the target function from the received echo signal.
The preferred reconstruction method is based on the idea of matched filtering. Match
filtering is based on the idea of correlating the received echo with the complex conjugate of
the initial transmitted radar pulse. This process is represented by

sM(t) = F−1{S(ω) · P ∗(ω)} = s(t) ∗ p∗(−t) (2.5)

= F−1{
[
n

σnP (ω) exp(−jω2xn
c
) · P ∗(ω)}

=
[
n

σnF
−1{|P (ω)|2 exp(−jω 2xn

c
)}

=
[
n

σnpsf (t− 2xn
c
) = f0(

ct

2
) ∗ psf (t).

The point spread function

psf (t− 2xn
c
) = F−1{|P (ω)|2 exp(−jω 2xn

c
)} (2.6)

is dependent on the spectral shape of the transmitted radar signal P (ω). The convention is to
let the power spectrum of a radar pulse |P (ω)|2 = 1 within its finite region of support given
by ω ∈ (ωc − ω0,ωc + ω0) where ωc denotes the carrier radian frequency and 2ω0 is the
bandwidth. Using these conditions the point-spread function can be represented as

psf (t) = F−1{|P (ω)|2}, ω ∈ (ωc − ω0,ωc + ω0) (2.7)

=
ω0
π
sin c(

ω0
π
t) exp(jωct)

where sinc(x) = sin(πx)
πx . This means the received echo is simply a delayed scaled version

of the transmitted radar signal which is dependent on the position of the target from the radar
and the target’s range radar cross section with some spreading due to sinc function.

The received echo signal is a band pass signal that is usually converted into a low pass
signal before match filtering. This process is known as base band conversion which can be
represented as

sb(t) = s(t) exp(−jωct) (2.8)
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Section 2.1 SAR Image Principle and Processing — a Brief

which gives the final base band matched filtered signal as

sMb(t) = sb(t) ∗ s∗0b(−t)

where s0b(t) = p(t− 2Xc

c ) exp(−jωct) is the base band version of radar pulse function p(t)
which is shifted to the right by a time distance corresponding to the center of radar swath
Xc. In this way, the correlation peak at t = 0 is referred to x = Xc. The process of matched
filtering is often done in the Fourier domain.

sMb(t) = F−1{Sb(ω) · S∗0b(ω)} (2.9)

=
[
n

σnF
−1{P (ω + ωc) exp(−j(ω + ωc)

2xn
c
) ·

P∗(ω + ωc) exp(j(ω + ωc)
2Xc
c
)}

=
[
n

σnF
−1{|P (ω + ωc)|2 exp(−j(ω + ωc)

2(xn −Xc)
c

}

=
[
n

σn · psf (t− 2(xn −Xc)
c

)

where the point-spread function is found by using the same convention, |P (ω)|2 = 1 with
ω ∈ (ωc−ω0,ωc+ω0). Only difference is that P (ω+ωc) is a base band signal now, that is

psf (t) = F−1{|P (ω)|2}, ω ∈ (−ω0,ω0) (2.10)

=
ω0
π
sin c(

ω0
π
t).

The matched filtering signal

sMb(t) =
[
n

σn · ω0
π
sin c(

ω0
π
(t− 2(xn −Xc)

c
)) (2.11)

simply shows a sinc–like blip at the location of a reflector with an amplitude proportional
to its RCS and bandwidth of the radar pulse. For example, if we place one unit reflector at
x1 = Xc−X0 and another one at x2 = Xc, the reconstructed matched filtering signal will
be

SMb =
ω0
π
[sin c(

ω0
π
(t+

2X0
c
)) + sin c(

ω0
π
t)]. (2.12)

It shows two sinc-like blip at t = −2X0

c and t = 0 (center of radar swath) respectively. The
range resolution is determined by the spread of the point–spread function. Under the same
assumption that the power spectrum of radar pulse function |P (ω)|2 = 1 within its 2ω0
bandwidth, the resolution can be approximated by one half of the main lobe width of the sinc
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Chapter 2 SAR Parametric Study Literature Review

function, that is the location of the first zero crossing at

ω0
π

2∆x

c
= 1, i.e. ∆x =

c

2

π

ω0
=

c

4B0
(2.13)

where B0 is the bandwidth of the base band radar pulse p(t) in Hz. For a digital radar
system, the return radar signal must be sampled with a sampling interval ∆t. According to
the sampling theory,

∆t <
1

2B0
. (2.14)

In reality, B0 may be just a –3dB cutoff frequency for the radar signal. The actual sampling
interval should be much finer to guard against the alaising error. The sampled radar return
signal in range unit is called discrete range bins.

xi =
c · ti
2

= Xc + (i− N
2
− 1)c ·∆t

2
; for i = 1, 2, · · · , N (2.15)

where ti = Ts + (i− 1) ·∆t is the sample locations in time unit. Ts is the starting sampling
time corresponding to the closest locationXc−Xo in the radar swath. For i = 1 and i = N ,
it yields

x1 = Xc − N
2
· c ·∆t

2
≤ Xc −X0 and xN = Xc + (

N

2
− 1) · c ·∆t

2
≥ Xc +X0 (2.16)

respectively. The N samples cover the entire support band of the radar swath
[Xc −X0, Xc +Xo].

There is one draw back with the radar pulse given above. The traditional radar pulse is
a direct trade off between power and resolution. If the resolution is increased the power of
the radar pulse is decreased and vice versa. In order to get around this difficulty, a linear
frequency modulated (LFM) chirp radar pulse is used.

p(t) = a(t) exp(j(βt+ αt2)) (2.17)

where

a(t) =

�
1 for 0 ≤ t ≤ Tp
0 otherwise

.

The chirp pulse for the radar signal behaves the same as any other chirp signal. The
instantaneous frequency of the chirp pulse is given by

ω(t) =
d

dt
(βt+ αt2) = β + 2αt (2.18)

where the frequency upsweeps (α > 0) from β to β + 2αTp (rad./sec.). The bandwidth of
the chirp radar pulse is equal to 2αTp. In this case, the carrier frequency of the chirp radar is
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Section 2.1 SAR Image Principle and Processing — a Brief

considered to be the mid–frequency

ωc = β + αTp (2.19)

and the bandwidth of the base band signal is then ±αTp. Therefore the Nyquist sampling
interval for the chirp radar return signal is ∆t ≤ π

αTp
. Using the chirp model for the radar

signal, the received echo signal (equation 2.3) becomes

s(t) =
[
n

σna(t− 2xn
c
) exp(j(β(t− 2xn

c
) + α(t− 2xn

c
)2)

=
[
n

σna(t− tn) exp(jβ(t− tn)) exp(j(αt2 − 2tnαt+ αtn
2))

where tn = 2xn
c .

The reconstruction of objects from a received echo signal using a transmitted chirp signal
is done by a process known as pulse compression. Pulse compression is done by using the
complex conjugate of the received signal with the phase of the transmitted chirp signal.

sc(t) = s∗(t) · exp(j(βt+ αt2)) (2.20)

=
[
n

σna
∗(t− tn) exp(jβtn) exp(j(2tnαt− αtn

2))

=
[
n

σna
∗(t− tn) exp(j(βtn − αtn

2)) exp(j2tnαt).

The compressed pulse sc(t) contains three parts for each reflector: a) σna∗(t − tn) is the
amplitude of the echo from the nth reflector; b) exp(j(βtn − αtn

2)) is a constant phase
delay caused by nth reflector in a second order function; c) exp(j2tnαt) is a sinusoid with a
frequency proportional to the location of nth reflector. The echoes can be detected by taking
the Fourier Transform of the compressed signal sc(t).

Sc(ω) =
[
n

σnPsf (ω − 2tnα) exp(j(βtn − αtn
2 − ωtn)) (2.21)

where

Psf (ω) = F{a∗(t)} = Tp sin c(
ωTp
2π

) (2.22)

is the point spread function in the frequency domain and Tp is the duration of the chirp pulse
in the time domain. For a rectangular pulse function a(t), we can detect the reflect locations
from the sinc-like blip at ω = 4αxn

c in the Fourier spectrum

Sc(ω) =
[
n

σnTp sin c((ω − 4αxn
c
)
Tp
2π
) exp(j(βtn − αtn

2 − ωtn)). (2.23)

The range resolution for a chirp pulse is again decided by the first zero crossing of the sinc

8



Chapter 2 SAR Parametric Study Literature Review

function from ω = 0

4α∆x

c

Tp
2π
= 1, i.e. ∆x =

πc

2αTp
(2.24)

in the range axis x = c
4αω.

2.1.2 Cross Range Imaging

The basic concept behind cross range imaging is the idea of Doppler frequency shift. The
concept of Doppler frequency shift can best be understood by an example. Suppose a single
frequency pulse is transmitted to a unit reflector with no other clutter. When the echo returns
back to the receiver the echoed signal has the same frequency as the transmitted signal. Now
if we move the receiver towards the object, the received echo signal will appear to have a
higher frequency than the transmitted pulse. If we move the receiver away from the object it
will appear as the echoed signal has a lower frequency than the transmitted pulse. This is the
concept of Doppler frequency shift. The cross range imaging that is presented here from a
mathematical viewpoint is based on wavefront reconstruction. Wavefront reconstruction is
the process of inverting the wave equation, which is the Fourier decomposition of a Green’s
Function. (Spherical phase function.)

In order to develop all of the mathematical equations for cross range imaging, again we
need to develop a model for the system. Suppose we have a set ofN targets with reflectivity
σn, n = 1, 2, · · · ,N and located at (xn, yn) where xn ∈ [Xc −X0,Xc +X0] is the range
value and yn ∈ [Yc − Y0, Yc + Y0] is the cross range value. The value Yc is center of radar
swath in the cross range domain. We assume that all the targets are at a fixed range, e.g.
xn = Xc, but at different cross ranges. The position of the radar will be specified by the
coordinates (0, u). The variable u, that is in the same direction as the cross range axis y, is
called the synthetic aperture domain or slow time domain. If Yc = 0, for any given radar
cross range location u, the cross range value is symmetric to u, yn ∈ [−Y0,+Y0], which is
referred to as the broadside SAR system. Otherwise, it is called a squint mode SAR system.
The variable of time t will be called the fast time domain. The variation of u can also be
expressed as the aspect angle. The aspect angle is the angle formed between the nth object
and the radar at position (0, u), which can be expressed as

θn(u) = arctan(
yn − u
xn

). (2.25)

The mathematical model of the received echo can now be generated. Suppose the radar
transmits a single frequency pulse

p(t) = exp(jωt). (2.26)

The distance between the radar at position u and the nth object at (xn, yn) is given by

9
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s
x2n + (yn − u)2. Now the received echo can be represented as

s(t, u) =
[
n

σnp

#
t− 2

s
x2n + (yn − u)2

c

$
(2.27)

= exp(jωt)
[
n

σn exp
�
−j2k

s
x2n + (yn − u)2

�
where k = ω

c (rad./m) is called the wavenumber. As before we can perform fast time base
band conversion of the received signal to obtain

s(ω, u) = s(t, u) exp(−jωt) (2.28)

=
[
n

σn exp
�
−j2k

s
x2n + (yn − u)2

�
=

[
n

sn(ω, u)

where

sn(ω, u) = σn exp
�
−j2k

s
x2n + (yn − u)2

�
(2.29)

is the base band echoed signal from each individual target. For a wide band signal
ω ∈ [ωc − ω0,ωc + ω0], the Fourier transform of the base band converted radar echo signal
(2.27) can be expressed as

s(ω, u) =

]
t

s(t, u) exp(−jωct) exp(−jωt)dt (2.30)

= P (ω − ωc)
[
n

σn exp
�
−j2k

s
x2n + (yn − u)2

�
or simply

s(ω, u) = P (ω)
[
n

σn exp
�
−j2k

s
x2n + (yn − u)2

�
(2.31)

where P (ω) is the lowpass base band spectrum of the radar pulse. This expression will
be used later on when we discuss SAR image algorithms. The reference signal used for
matched filtering is only one unit reflector placed at the center of the broadside target area,
which is given by the coordinates (xn, yn) = (Xc, 0). The base band reference signal can be
expressed as

s0(ω, u) = exp
�
−j2k

s
X2
c + u

2
�
. (2.32)

The phase function exp
�
−j2ksx2n + (yn − u)2�in equation (2.29) means that the signal

sn(ω, u) is a phase modulated (PM) signal or also known as a spherical PM signal. Now take

10
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the slow–time Fourier transform of the spherical PM signal with respect to u ∈ (−∞,∞)

Sn(ω, ku) =

] ∞
−∞

sn(ω, u) exp(−jkuu)du (2.33)

= σn

] ∞
−∞

exp
�
−j2k

s
x2n + (yn − u)2 − jkuu

�
du

where ku (rad./m) represents the spatial frequency domain of the u (m) domain and is also
referred to as the slow-time frequency or Doppler domain (The unit for ku is frequency
(rad./sec) over speed (m/sec.)). This integral can now be evaluated using the method of
stationary phase. The evaluation of the integral gives the expression

Sn(ω, ku) = σn
exp(−j π4 )s
4k2 − k2u

exp
�
−j
s
4k2 − k2u · xn − jku · yn

�
(2.34)

for ku ∈ [−2k, 2k] and zero otherwise. Sn(ω, ku) has a finite support band width in ku. In

this signal, the term exp(−j π4 )√
4k2−k2u

is just a slowly fluctuating amplitude and the phase term gives

far more importance in cross-range imaging analysis. We can approximate the term as

Sn(ω, ku) = σn exp
�
−j
ks
4k2 − k2u · xn + ku · yn

l�
(2.35)

where the phase is a linear function of xn and yn as the contrast to a nonlinear function in
sn(ω, u).

The above derivation is only for an infinite aperture synthetic radar, which in practical
applications is impossible. Now lets look at a practical situation where the length of the
synthetic aperture is equal to 2L. This means u can also be expressed as u ∈ [−L,L]. The
slow–time Fourier transform becomes

Sn(ω, ku) =

] L

−L
sn(ω, u) exp(−jkuu)du. (2.36)

Again the evaluation of the integration yield the same simplified echo signal in the ku
domain (equation 2.35). The only difference is that the finite support band width becomes

ku ∈ [Kun(L),Kun(−L)] (2.37)

= [2k sin(θn(L)), 2k sin(θn(−L))]
where Kun(u) is the instantaneous frequency of the PM signal sn(ω, u) (2.29) in the u
domain. It can be found by

Kun(u) =
∂

∂u

�
−2k

s
x2n + (yn − u)2

�
(2.38)

=
2k(yn − u)s
x2n + (yn − u)2

= 2k sin(θn(u))

11
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where θn(u) shown in equation (2.25) is once again the aspect angle of the radar to the nth

target. The value of

Ωn = [2k sin(θn(L)), 2k sin(θn(−L))] (2.39)

denotes the slow–time Doppler support band of Sn(ω, ku) for nth target.
Now let us consider a couple oberservations.. Case 1: if a unit reflector is placed at

(xn, yn = 0) which is considered a strict boresight target (also θn(0) = 0), then the center of
the band should be located at (u = 0)

Ωnc = Kun(0) = 0. (2.40)

The band width of Sn(ω, ku) in this case is the largest equal to

Ωn = [2k sin(arctan(
−L
xn
)), 2k sin(arctan(

L

xn
))] (2.41)

≈ [−2kL
xn

,
2kL

xn
]

where L is generally much smaller than xn. Case 2: for the off boresight or squint targets
(yn 9= 0, that is, θn(0) 9= 0), the carrier Doppler frequency (also known as the phase center
of PM signals) should be

Ωnc ≈ Kun(0) = 2k sin(θn(0)) (2.42)

and the band width should be approximately

|Ωn| ≈ 4kL
xn

cos2(θn(0)). (2.43)

We can see when θn(0) =
π
2 , that is, the target is located at (xn, yn =∞), the band width

of Sn(ω, ku) for the target is zero. The radar can not see the target. Therefore, for finite
aperture SAR, it works best for the targets at or near boresight. The band width of Doppler
support band of the squint targets are narrower than those of the boresight targets. It is
crucial to recognize that the SAR signal is a bandpass signal centered at 2k sin(θn(0)).

The reconstruction of the target function from the received signal is done using the
method of matched filtering which is the same method used in the range imaging case. The
received echo can now be expressed as

S(ω, ku) =
[
n

Sn(ω, ku) (2.44)

=
[
n

σnIn(ω, ku) exp
�
−j(

s
4k2 − k2u · xn + ku · yn)

�
where In(ω, ku) indicates the band width of the slow–time Doppler support band of nth

12
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target

In(ω, ku) =

�
1 for ku ∈ Ωn = [2k sin(θn(L)), 2k sin(θn(−L))]
0 otherwise

. (2.45)

Same as in equation (2.32), the reference signal for match filtering in Doppler frequency ku
can be found by placing a unit reflector at the center of the broad side of the radar, that is
(xn, yn) = (Xc, 0). From equation (2.35), it yields

S0(ω, ku) = exp
�
−j
s
4k2 − k2u ·Xc

�
for ku ∈ [−2k, 2k]. (2.46)

To examine the cross range image of the targets, we only pick the targets located at a
common range value, say xn = Xc for n = 1, 2, · · ·. The target function, which describes
the locations of the targets in the scene, can now be expressed by

F (ku) = S(ω, ku) · S∗0(ω, ku) (2.47)

= exp(−j
s
4k2 − k2u ·Xc)

[
n

σnIn(ω, ku) exp (−jku · yn)

· exp
�
j
s
4k2 − k2u ·Xc

�
=

[
n

σnIn(ω, ku) exp (−jku · yn)

which is the same as the match filtering

f(y) = s(ω, u) ∗ s∗0(ω,−u)

in u domain. The cross range distance y which is in the same domain of u. Now taking the
inverse Fourier Transform the equation F (ku) gives

f(y) =
[
n

σn · F−1 {In(ω, ku) exp (−jku · yn)}

=
[
n

σn · in(ω, y − yn)

where in(ω, y) is the point spread function for nth target in cross range u. Since In(ω, ku)
is a brick function with width equal to |Ωn| in (2.43) and is centered approximately at Ωnc in
(2.42),

in(ω, y) =
|Ωn|
2π

sin c(
|Ωn|
2π

y) exp(jΩncy). (2.48)

The point spread function for the cross range is dependent on the slow time Doppler
frequency bandwidth of the system. The magnitude of the target function can now be

13
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expressed as

|f(y)| =
[
n

σn
|Ωn|
2π

| sin c(
|Ωn|
2π

y)|. (2.49)

The cross range resolution of the SAR can be again measured by the location of first zero
crossing (one half of the main lobe) of the sinc function

|Ωn|
2
∆yn = π. (2.50)

It yields

∆yn =
2π

|Ωn| ≈
λ · xn

4L cos2(θn(0))
(2.51)

following equation (2.43) and k = ω
c =

2π
λ . The resolution obtained in real systems never

approaches this value, so it is customary to multiply this value by a fudge factor between 1
and 2. Comparing with the classical Rayleigh cross range resolution for a finite aperture
radar RλD where R is the range xn; D is the radar aperture 2L; and effective wavelength λ

is λ
2 due to the round–trip propagation, ∆yn will be the same as the Rayleigh resolution for

boresight targets (θn(0) = 0).

2.1.3 SAR Radiation Pattern

The mathematical models generated so far only take into account the effects of the objects
in the imaging scene on the electromagnetic waves of the radar. This is too simplistic for
any practical application of radar theory. Any mathematical model to be accurate must take
into account the effect of the input/output of the transmitter, the medium with which the
electromagnetic waves are propagating through, and the noise effects of the receiver. All
three of these effects can be modeled using one linear transfer function called the channel
transfer function. The SAR radiation pattern is a measure that identifies the channel effect.
To greatly simplify the following discussion, the radar will assumed to be stable (no variation
in the radar radiation pattern) and all of the targets in the scene are homogenous.

The first effect to be modeled is the properties of the radiation pattern in the spatial and
Fourier domains of the physical antenna itself. First assume that the radar antenna is at a
fixed position (0, u). Next assume the antenna absorbs and transmits microwave energy via
its surface. The radar transmits a pulse given by

p(t) = exp(jωt). (2.52)

Now let S represent the contour that defines the surface of the antenna. So to begin
modeling, we will assume the physical antenna is centered at a location (0, u) and composed
of very small differential elements located at

[xe(l), u+ ye(l)], l ∈ S. (2.53)
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An arbitrary point in the spatial domain (x, y) will experience radiation from a differential
element [xe(l), ye(l)] of antenna in transmit mode equal to

i(l)s
x2 + y2

p

#
t−

s
[x− xe(l)]2 + [y − (u+ ye(l))]2

c

$
dl (2.54)

=
i(l)

r
exp(jωt) exp(−jk

s
[x− xe(l)]2 + [y − u− ye(l)]2)dl

where r =
s
x2 + y2 and i(l) is the amplitude function that represents the transmitting

strength of that element. This is determined by the antenna manufacturer. The total radiation
a point in space will receive from the antenna is simply the sum of all of the elements making
up the antenna

hT (ω, x, y − u) = 1

r

]
l∈S

i(l) exp(−jk
s
[x− xe(l)]2 + [y − u− ye(l)]2)dl (2.55)

where exp(jωt) is removed via base band conversion. Note that the phase part of the signal
on the right of the equation

exp(−jk
s
[x− xe(l)]2 + [y − u− ye(l)]2) (2.56)

is a spherical PM signal. Using the previous information on the evaluation of Fourier
transform of spherical PM signals (2.29) and (2.35), its Fourier transform with respect to u
in Doppler frequency domain ku becomes

exp
�
−j
ks
k2 − k2u · (x− xe(l)) + ku(y − ye(l))

l�
, ku ∈ [−k, k]. (2.57)

Note the similarity between yn − u and (y − ye(l)) − u in equation (2.29) and equation
(2.55) respectively. Equation (2.55) can be rewritten as

hT (ω, x, y − u) =
1

r

]
l∈S

i(l)[

] k

−k
exp(−j ·ks

k2 − k2u · (x− xe(l)) + ku(y − ye(l))
l
) exp(jkuu)dku]dl

=

] k

−k
exp

�
−j
ks
k2 − k2u · x+ kuy

l�
(2.58)

AT (ω, ku) exp(jkuu)dku

where

AT (ω, ku) =
1

r

]
l∈S

i(l) exp
�
j
ks
k2 − k2u · xe(l)) + kuye(l)

l�
dl (2.59)

is the radar transmitting amplitude pattern in the slow–time Doppler domain. The evaluation
of AT (ω, ku) will depend on the physical attributes (S) of the individual radar and fast–time
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frequency ω. From equation (2.58), we can get that the Fourier transform of hT (ω, x, y− u)
with respect to u is equal to

exp
�
−j
ks
k2 − k2u · x+ kuy

l�
AT (ω, ku). (2.60)

Using inverse Fourier transform relationship in (2.29) and (2.35), we can have

hT (ω, x, y − u) = aT (ω, x, y − u) exp
�
−jk

s
x2 + (y − u)2

�
(2.61)

where aT (ω, x, y − u) is the transmit mode radar radiation amplitude pattern.
The model of the electromagnetic radiation being received by a differential element on

the radar from a spatial location (x, y) is the same as the previous model of the transmit. In
fact for most radar systems the transmit mode is equal to the receive mode. For an active
monostatic physical radar system located at (0, u), the transmit–receive mode radiation
pattern is simply the product of the transmit and receive modes

h(ω, x, y − u) = hT (ω, x, y − u)hR(ω, x, y − u). (2.62)

The Fourier Transform of h(ω, x, y − u) with respect to the slow–time u becomes

exp
�
−j
ks
k2 − k2u · x+ kuy

l�
AT (ω, ku) ∗ (2.63)

exp
�
−j
ks
k2 − k2u · x+ kuy

l�
AR(ω, ku).

The convolution becomes a PM signal dominated function and it can be approximated by the
value at its phase center (when integrand = ku

2 )

AT (ω,
ku
2
)AR(ω,

ku
2
) exp

�
−j
ks
4k2 − k2u · x+ kuy

l�
. (2.64)

In order for the model to be complete, we need to incorporate the effect the target has on
the electromagnetic radiation. The coherent SAR. signature target amplitude pattern contains
phase and magnitude. The amplitude pattern will vary with the radar pulse frequency and
the aspect angle. The SAR radiation pattern for the nth target is given by

hn(ω, xn, yn − u) = hT (ω, xn, yn − u)an(ω, xn, yn − u)hR(ω, xn, yn − u) (2.65)

which is the combination of the effects of the radiation from radar to the target, the target, and
radiation from target to radar. The frequency domain representation of the target amplitude
function an(ω, xn, yn − u) is

An(2k sin(θn(u)),ω) = An

#
2k(yn − u)s
x2n + (yn − u)2

,ω

$
(2.66)

and it is a scalar function of the physical frequency of the radar and the instantaneous
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frequency (2.38),

ku = 2k sin(θn(u)) =
2k(yn − u)s
x2n + (yn − u)2

, (2.67)

where

θn(u) = arctan

�
yn − u
xn

�
(2.68)

is the aspect angle of the nth target with respect to the radar at (0, u). Note that An(·) is not
the Fourier transform of an(·), but a direct mapping of the radiation amplitude information

an(ω, xn, yn − u) = 1

r
An(2k sin(θn(u)),ω) (2.69)

in different scale, where the scale factor 1r is often ignored for notation simplification. For
example, in generic spot SAR, the amplitude of radiation pattern of a target at (xn, yn) in the
synthetic aperture domain u is a rectangular window function

an(ω, xn, yn − u) =
�
1 for |u| ≤ L
0 otherwise .

(2.70)

In the slow–time Doppler domain the amplitude function is

An(ω, ku) =

�
1 for ku ∈ Ωn = [2k sin(θn(L)), 2k sin(θn(−L))]
0 otherwise.

. (2.71)

Therefore, in the Fourier transform domain, we have

AT (ω,
ku
2
)AR(ω,

ku
2
)An(ω, ku) exp

�
−j
ks
4k2 − k2u · x+ kuy

l�
(2.72)

where

• AT (ω, ku2 )AR(ω, ku2 ) is the active radar amplitude pattern;
• An(ω, ku) is the target amplitude pattern;

• exp
�
−j
ks
4k2 − k2u · x+ kuy

l�
is the phase history indicating target coordinates.

In the spatial domain, we have

aT (ω, x, y − u)aR(ω, x, y − u)an(ω, xn, yn − u) exp
�
−j2k

s
x2n + (yn − u)2

�
. (2.73)

The above derivation is done using the assumption that the transmitted and received
electromagnetic radiation is a scalar quantity. Unfortunately the received electromagnetic
radiation even from a scalar radar pulse will contain both vertical and horizontal components.
Multiple polarization radar waves are also often used in the transmitted radar pulse to
improve resolution. Fortunately polarized waves can be easily incorporated into our models.
For example, let the radar at (0, u) illuminates an arbitrary target at (xn, yn) with a polarized
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vertical electromagnetic pulse. The amplitude function of the transmit mode of the radar can
be represented as

aVT (ω, xn, yn − u). (2.74)

When the target is illumined by the vertically polarized wave, the target will reflect back
electromagnetic radiation with both a vertical and a horizontal component. This can be
model as one amplitude function which represents vertical mode scatting from a vertically
polarized incident wave

aV Vn (ω, xn, yn − u) (2.75)

and one amplitude function that represents horizontal mode scattering from a vertically
polarized incident wave

aVHn (ω, xn, yn − u). (2.76)

When the radar is in receive mode, the antenna must record both the horizontal and vertical
components of the electromagnetic radiation that can be modeled with the two types of
amplitude functions

aHR (ω, xn, yn − u) and aVR(ω, xn, yn − u). (2.77)

For examples:

aVT (ω, x, y − u)aVR(ω, x, y − u)aV Vn (ω, xn, yn − u) (2.78)

is the combined amplitude patterns for V mode transmission and V mode reception. And

aVT (ω, x, y − u)aHR (ω, x, y − u)aVHn (ω, xn, yn − u) (2.79)

is the combined amplitude patterns for V mode transmission andH mode reception.

2.1.4 The Generic Spot SAR Model

The purpose of this section is to bring together all the concepts covered so far in the previous
sections to form a multidimensional (range x, cross–range y, altitude z) SAR image function
that represents the targets in the scene. In the generic SAR imaging model, we will develop
equations using slant range and cross range parameters (xs, y)

xs =
s
x2 + z2 (2.80)

where x is the range and z is the elevation of the aircraft. For the notation simplicity, we just
use x for the slant range by considering that the slant plane is also a 2D plane for a fixed
aircraft altitude. Again, we assume a collection on N targets randomly positioned and each
target with a radar cross section given by σn. Each radar cross section will be modeled with
an amplitude function, an(ω, xn, yn − u) which will vary with radar frequency, the target’s
relative range and the aspect angle.
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The radar is assumed to be on an aircraft and its location will be given by (0, u). The
aircraft will also be assumed to be moving at a constant velocity, vr, which allows the slow
time domain to be represented by

τ =
u

vr
. (2.81)

The pulse repetition interval (PRI) is defined as related to τ by PRI= ∆τ . This means the
sample spacing in the u domain can be expressed by

∆u = ∆τ · vr = PRI · vr = vr
PRF

(2.82)

where PRF stands for pulse repetition frequency.
The radar will illuminate the target area with a large-bandwidth signal p(t). In this

development, we consider a SAR system that keeps the same target area illuminated through
out the scanning development. The targets in the area will be seen at all antenna locations ,
that is, (−∞ < u <∞). The radar radiation is assumed to be omnidirectional. The echoed
signal received by the radar from the imaging scene can be represented by

s(t, u) =
[
n

σnp

#
t− 2

s
x2n + (yn − u)2

c

$
. (2.83)

There are two Fourier Transforms that can now be used for our benefit in the development
of the rest of the equations. The first is the fast time (t) Fourier Transform of the received
base band radar echo signal

s(ω, u) =

]
t

s(t, u) exp(−jωc) exp(−jωt)dt (2.84)

= P (ω)
[
n

σn exp
�
−j2k

s
x2n + (yn − u)2

�
where P (ω) is the lowpass base band Fourier spectrum of the wide band radar signal p(t)
(2.31). This shows that the received signal is a linear combination of spherical PM signals
and the only difference from equation (2.29) is the wide band radar pulse signal. The second
is the Fourier transform with respect to the slow time domain u,

S(ω, ku) = P (ω)
[
n

σn exp
�
−j(

s
4k2 − k2u · xn + ku · yn)

�
. (2.85)

This equation is similar to the received echo in equation (2.44) with an exception of the wide
band radar pulse signal.

In order to develop the rest of the equations, we have to define two new functions which
are called the SAR spatial frequency transforms:

kx(ω, ku) =
s
4k2 − k2u (rad./m) (2.86)
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and

ky(ω, ku) = ku. (2.87)

The echoed signal can now be expressed using the new functions as

S(ω, ku) = P (ω)
[
n

σn exp (−j[kx(ω, ku)xn + ky(ω, ku)yn]) . (2.88)

The ideal target function to represent the objects in the scene can be modeled by

f0(x, y) =
[
n

σnδ(x− xn, y − yn) (2.89)

and its 2D Fourier transform to (kx, ky) domain

F0(kx, ky) =
[
n

σn exp(−j[kxxn + kyyn]). (2.90)

The received signal can now be represented as

S(ω, ku) = P (ω)F0(kx(ω, ku), ky(ω, ku)). (2.91)

There are several ways to reconstruct the target function (SAR imaging) from received
echo signal. We will discuss three of the common SAR wavefront digital reconstruction
algorithms developed in the late 1980’s: fast–time matched filtering, range stacking and
back projection.

The development presented so far does have a significant practical problem that must
be solved before it can be used in practical SAR imaging algorithm. The problem arises
from the fact that the mapping of the data from the (ω, ku) domain to the (kx, ky) domain is
nonlinear. This means after mapping received echo S(ω, ku) to the (kx, ky) domain, the data
for the function F0(kx, ky) is unevenly spaced, which will cause the object function f0(x, y)
to be an inaccurate representation of the scene. We start with some assumptions that there
are N samples in fast time tn = n∆t so as in its frequency domain

kn = n
∆ω

c
= n

2π

cN∆t
(2.92)

and M synthetic aperture (slow–time) samplings of the SAR signal S(ω, u), which give a
sampling internal ∆u in the u domain. After the slow–time FFT of S(ω, u), there are M
samples of S(ω, ku) with the sampling interval 2π

M∆u , that is

kum = m∆ku = m
2π

M∆u
. (2.93)

Since ky(ω, ku) = ku is a direct mapping, the discrete values of ky are

kynm = kum. (2.94)
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The discrete values of kx are given by

kxnm =
s
4k2n − k2um. (2.95)

The nonlinear transform and the rounding in the calculation cause uneven samples in kxnm
and errors in the locations of targets. But it can be corrected by interpolation.

2.1.4.1 Fast–time Matched Filtering – an interpolation based digital reconstruction
method The reconstructed target function using matched filtering in Fourier transform
domain can be expressed as

F (kx(ω, ku), ky(ω, ku)) = S(ω, ku)P
∗(ω) (2.96)

= |P (ω)|2
[
n

σn exp (−j[kxxn + kyyn])

where ku ∈ [−2k, 2k] and ω ∈ [ωc − ω0,ωc + ω0]. Before interpolation can be done, the
function must under go the conversion from a bandpass signal to a lowpass signal

Fb(kx(ω, ku), ky(ω, ku)) = F (kx, ky) exp(jkxXc) (2.97)

by using the reference target function of a unit reflector at (Xc, 0) for a broadside SAR
system. Or

Fb(kx(ω, ku), ky(ω, ku)) = F (kx, ky) exp(jkxXc + jkuYc) (2.98)

for the unit reflector at (Xc, Yc) in a squint mode SAR. The conversion process will make
the target function f(x, y), that is inverse Fourier transform of Fb(kx, ky), to be centered at
the origin (x, y) = (0, 0).

The interpolation is to create accurate samples of the function Fb(kx, ky). Since only the
variable kx experienced a nonlinear transform (2.95), the interpolation is only performed
over the kx domain.

Fb(kx, ky) =
[
kxnm

Fb(kxnm, kynm)Jm(n,∆ω)h(kx − kxnm) (2.99)

where

Jm(n,∆ω) =
dkx(ω, ku)

dω
=
d
s
4k2 − k2u
dω

(2.100)

=
4k

c
s
4k2 − k2um

is the Jacobian derivative of transformation from k = ω
c to kx. The function h(kx−kxnm) is

any cardinal functions that can be a windowed sinc function or a cubic B–spline function. For
any given evenly spaced sample location kx = n∆kx the function Fb(kx, ky) is interpolated
from the uneven spaced samples of Fb(kxnm, kynm) where the sampling interval must
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satisfy

∆kx ≤ π

X0
(rad./m). (2.101)

Since the length of the target area (−X0,X0) is 2X0, then the resolution in Fourier domain,
kx, should be 2π

2X0
. The target function can be reconstructed by using inverse FFT of the

interpolated Fb(kx, ky) with even spaced samples.

f(x, y) =
[
n

[
m

Fb(n∆kx,m∆ky) exp

�
j

�
xn
2π

N
+ ym

2π

M

��
(2.102)

where∆ky = ∆ku.
In real implementation, the Jacobian function in the equation is often ignored due to its

nature of slow fluctuation in the amplitude.

2.1.4.2 Range Stacking Equation (2.98) shows the result of fast time matched filtering
and base band conversion with respect to the reference point (x, y) = (Xc, Yc). In theory,
the target function can be recovered by 2–dimensional Fourier transform.

f(x, y) =

]
ky

]
kx

Fb(kx, ky) exp(j[kx · x+ ky · y])dkxdky (2.103)

=

]
ku

]
ω

k
S(ω, ku)P

∗(ω) exp(j
s
4k2 − k2uXc + jkuYc)

l
(2.104)

exp(j[
s
4k2 − k2u · x+ ku · y])J(ω, ku)dωdku

where equation (2.104) is the map from (kx, ky) to (ω, ku) for the expression (2.103). For
the same reason, the amplitude function J(ω, ku) can be ignored. At this time, let us only
consider the target function at the reference range bin x = xi. Equation (2.104) can be
written as

f(xi, y) =

]
ku

]
ω

k
S(ω, ku)P

∗(ω) exp(j
s
4k2 − k2u(Xc + xi) + jkuYc)

l
(2.105)

dω exp(jku · y)dku.
In the above equation, the expression inside of the square brackets can be considered as
the received signal S(ω, ku) (2.85) being processed by a fast-time matched filter with a
reference signal at the range bin xi. The reference signal used in the matched filter can
be found by placing a unit reflector at (x, y) = (Xc + xi, Yc). From equation (2.85), the
reference signal can be expressed as

S0i(ω, ku) = P (ω) exp
�
−j(

s
4k2 − k2u · (Xc + xi) + ku · Yc)

�
. (2.106)

We now have the target function in the Fourier domain.

Fb(ω, ku) = S(ω, ku)S
∗
0i(ω, ku). (2.107)
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Therefore, the target function for the reference range bin (xi, y) can be expressed by

f(xi, y) =

]
ku

�]
ω

Fb(ω, ku)dω

�
exp(jku · y)dku (2.108)

where the signal inside the square brackets is the integral (sum) of the fast-time matched
filtering result over the fast time frequency at the range bin xi. After that the target signal
at one range bin, xi, can be reconstructed by inverse Fourier transform with respect to ku.
There is also an alternative algorithm for Range stacking, where the integrations of ω and ku
are switched, but the results end up the same. However, the alternative algorithm is more
computational intensive in practical implementation. After repeating the process (2.108) for
xi ∈ (−X0,X0), we can put the target functions, f(xi, y), at all the range bins together to
form a 2–dimensional SAR image. Since the actual implementation is all done in (ω, ku)
domain, there is no interpolation involved and thus there are no truncation errors either.

2.1.4.3 Back Projection In spot SAR mode, the radar antenna at all different locations
(0, u) sees target area. In order to form a SAR image, the energy reflected from the same
target from different antenna locations must be coherently added together at the same image
location. In the previous two sections, for the fast time matched filtering method, the
coherent adding is realized by correlate received radar signal to a reference function of a
unit reflector at (0, 0) (scene center) for each antenna location (0, u). In the range stacking
method, the coherent adding is realized by correlate the received radar signal to a reference
function of a unit reflector at range bins (xi, 0) (center of each range bin). Time Domain
Correlation (TDC) reconstruction method is another reconstruction method based on the
formation of the SAR image function by correlating received radar signal with a reference
function of a unit reflector at the spatial points (xi, yj). That is

f(xi, yi) =

]
u

]
t

s(t, u)p∗
%
t− 2

s
x2i + (yj − u)2

c

&
dtdu (2.109)

where s(t, u) is the measured radar signal in the (t, u) domain as in equation (2.27). TDC
reconstructing is basically a method that correlates the received SAR signal with each point
(xi, yj) in the space of the target function. TDC is the measure of the reflectivity at each
point in space. In equation (2.109), the term]

t

s(t, u)p∗
%
t− 2

s
x2i + (yj − u)2

c

&
dt (2.110)

can be considered to be the fast–time matched filtered signal

sM(t, u) = s(t.u) ∗ p∗(−t) (2.111)

=

]
τ

s(τ , u)p∗(t+ τ)dτ
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at t = −2
√
x2i+(yj−u)2

c . Equation (2.109) can be written as

f(xi, yj) =

]
u

sM

#
−2
s
x2i + (yj − u)2

c
, u

$
du. (2.112)

This is the equation known as the back projection SAR reconstruction. The target function
f(x, y) is reconstructed at each given grid point (xi, yj) by coherently adding up all the data
from the matched filtering results in the fast time domains which correspond to the given
point for all radar antenna locations, u.

2.1.5 The Spot SAR model — Practical Considerations

In the spot mode, the radar beam is steered towards the center of spotlighted target area
(Xc, Yc) as contrast to the assumption in the generic radar model there is no radar beam
steering. Since the center is always on the broadside line at all slow–time radar location
value u, the broadside angle for the radar location (0, u) can be defined as

θu = tan
−1
�
Yc − u
Xc

�
(2.113)

which varies as the antenna moves along the slow–time value u. If we create a scene center
coordinate system by shifting and rotation, then we have�

xθu
yθu

�
=

�
cos(θu) sin(θu)
− sin(θu) cos(θu)

��
x−Xc
y − Yc

�
. (2.114)

(xθu , yθu) coordinates vary with respect to the antenna location u. The change of the
distance

Rc =
s
X2
c + (Yc − u)2, (Yc − u) ≤ 2L

from the radar antenna to the scene center will cause the change of radar footprint [−X0,X0]
and [−Y0, Y0]. In practice, the radar footprint change is ignored due the fact that synthetic
aperture length 2L in the cross range u is much smaller than the range in x where
(Yc − u) = 2L only when the squint angle is zero. In the new scene centered coordinates
(xθu , yθu), the target area is always in the broadside of the radar antenna. Similar to the
equation (2.66), now we have the beam–steered radiation pattern amplitude function for a
target location (x, y) inside the spotlighted target area

a(ω, x, y, u) ≈ A

 2k(yθu − 0)t
x2θu − (yθu − 0)

2
,ω

 (2.115)

= A

�
2k [(y − Yc) cos(θu)− (x−Xc) sin(θu)]

r
,ω

�
where r is the distance from the antenna location to the target. Note the function is
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a(ω, x, y, u) instead of a(ω, x, y − u), since y and u are now independent variables. The
received fast–time Fourier transform of radar signal in the spotlighted area become

s(ω, u) = P (ω)
[
n

an(ω, x, y − u)a(ω, x, y, u) (2.116)

exp
�
−j2k

s
x2n + (yn − u)2

�
where an(·) is the amplitude pattern of nth target. In the slow–time Fourier transform
domain, we have

S(ω, ku) = P (ω)
[
n

An (ω, ku)A(ω, ku, xn, yn)In(ω, ku) (2.117)

exp
k
−j
�s

4k2 − k2u · xn + ku · yn
�l
.

The difference from the generic spot SAR model is the spatial varying function
A(ω, ku, xn, yn) which will smear the target function and blur the image. It becomes
worse when the phase variation of the radiation pattern amplitude function A(ω, ku, xn, yn)
is large. To remove the smearing effects, a shift varying filter (in slow–time domain u)
A∗(ω, ku, xn, yn) must be applied to remove the phase variations when A(ω, ku, xn, yn) is
not a real or of small phase variations. In the case that radar footprint 2X0, 2Y0 and synthetic
aperture length 2L are much smaller than the radar range Rc, the shift varying filter can be
approximated as follows using the invariant squint angle θc

A(ω, ku, xn, yn) ≈ A
�
2k [(y − Yc) cos(θc)− (x−Xc) sin(θc)]

r
,ω

�
(2.118)

Furthermore, in narrow bandwidth spot SAR system, k can be approximated by the
wavenumber kc = ωc

c at the carrier frequency.. The invariant filter (2.118) can be further
simplified a weighting function (in slow–time domain u) according to the target location
(x, y),

A(ω, ku, xn, yn) ≈ A
�
2kc [(y − Yc) cos(θc)− (x−Xc) sin(θc)]

r
,ω

�
. (2.119)

2.1.6 The Stripmap SAR model

Although Spot and Stripmap SAR use many of the same concepts, stripmap SAR introduces
constraints that must be taken into account before the SAR system can make maximum use
of the information collected. The largest constraint for the Stripmap SAR is how to deal with
each target being ‘‘visible’’ to only a small part of the synthetic aperture instead of the full
aperture in the Spotlight case. The range coordinates of the SAR image will stay constant in
the Stripmap SAR image, but the cross range coordinates will fluctuate. If we assume the
radar radiation pattern which models the channel effect of a given radar (antenna, receiver,
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propagation medium) is given by

h(ω, x, y − u) = a (ω, x, y − u) exp
�
−j2k

s
x2 + (y − u)2

�
(2.120)

where all the values in the equation are the same as for the spotlight case. Now if we assume
that the radar used has either a planar or hyperbolic shape, the radar pulse will expand from
the radar into a cone shape. The half beam width B can be defined as

B = r sin(φd) (2.121)

with a far field approximation of

B = x tan(φd) (2.122)

where φd is the diverging angle, which is dependent on the geometrical shape of the radar or
more precisely

φd =

 arcsin
�

λ
Dy

�
for a Plannr radar

arctan
�
Dy

2Xf

�
for a Hyperbolic radar

(2.123)

whereDy is the diameter of the radar in the cross range direction andXf is the focal range
of the Hyperbolic radar. For the nth reflector located at the coordinates (x, y) in the image
scene, the reflector is observable by the radar at the synthetic aperture domain

u ∈ [y −B, y +B]. (2.124)

If the target area of interest is [−Y0, Y0] in the cross range and the synthetic aperture interval
is [−L,L] that includes the target area of interest, that is, L = Y0 + B, then the effective
radiated target area in the cross range becomes [−(L+B), (L+B)]. Since the half beam
width B varies as the range value x changes, the synthetic aperture interval and radiated
area are also changing with respect to the range value x. Now as with the Spotlight case, the
return echo can be written as

s(ω, u) = P (ω)
[
n

an (ω, xn, yn − u)a (ω, xn, yn − u) (2.125)

exp
�
−j2k

s
x2n + (yn − u)2

�
where all values are the same as defined before. As mentioned before, the nth reflector can
only be observed by the radar at the synthetic aperture positions within u ∈ [yn−Bn, yn+Bn]
where Bn = xn tan(φd). Instead of referencing the location of the nth reflector with the
image coordinates (x, y), we can give the location of the nth reflector in terms of the aspect
angle. The aspect angle that the nth reflector makes with the radar can be written as a
function of the radar position u as

θn(u) = arctan

�
yn − u
xn

�
. (2.126)
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Now we can determine the interval of the aspect angle that the nth reflector is observed by
the synthetic aperture, which is given by

[θn(yn +Bn), θn(yn−Bn)] =
�
− arctan

�
Bn
xn

�
, arctan

�
Bn
xn

��
= [−φd,φd]. (2.127)

The result is now only dependent of the radar parameter φd and independent of the reflector
location. Performing the slow–time Fourier transform of s(ω, u) yields

S (ω, ku) = P (ω)
[
n

An (ω, ku)A (ω, kn) exp [−j (kxxn + kyyn)] (2.128)

where kx =
s
4k2 − k2u and ky = ku. The support band for ω is

[ωmin,ωmax] = [ωc − ω0,ωc + ω0] (2.129)

and for ku is [−2k sin(φd), 2k sin(φd)]. In other words, the angular slow-time Doppler φ
takes range

φ = arcsin

�
ku
2k

�
∈ [−φd,φd]. (2.130)

The target function can now be reconstructed using fast time and slow time match filtering

F (kx, ky) = P ∗(ω)A∗ (ω, kn)S (ω, ku) (2.131)

= |P (ω)A (ω, kn) |2
[
n

An (ω, ku) exp [−j (kxxn + kyyn)]

and then the target function can be reconstructed using 2-D inverse Fourier transform with
respect to kx and ky

f(x, y) =
[
n

fn(x− xn, y − yn) (2.132)

where

fn(x, y) =

]
kx

]
ky

|P (ω)A (ω, kn) |2An (ω, ku) exp [−j(kxx+ kyy)] . (2.133)

The resolution of a stripmap SAR system is dependent upon the bandwidth and geometric
shape of the radar. Since the reconstructed target function is developed from inverse Fourier
transform, the bandwidth of |P (ω)A (ω, kn) |2An (ω, ku) in (kx, ky) domain sets the
resolution in (x, y). Lets assume the system uses planar radar.

kx =
s
4k2 − k2u =

t
4k2 − 4k2 sin2(φ) = 2k cos(φ) (2.134)

The bandwidth of the SAR image in the kx domain is then given by Bx = kxmax − kxmin
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where

kxmin = 2kmin cos(φd) and kxmax = 2kmax, at φ = 0. (2.135)

The bandwidth in the ky = ku domain for a planar radar is given by By = 8π
Dy

, where

ku ∈ [−2k sin(φd), 2k sin(φd)]
∈

�
−2k λ

Dy
, 2k

λ

Dy

�
=

�
− 4π
Dy
,
4π

Dy

�
. (2.136)

Assuming the amplitude fluctuation is small, using the entire rectangular support areaBx by
By, the 2–D inverse Fourier transform will produce the target function as a separable 2-D
sinc function

sin c
�
Bxx

2π

�
sin c

�
Byy

2π

�
. (2.137)

If half of the main lobe (first zero crossing) is used to represent the resolution width, the
two–dimensional resolution cell in the target domain (x, y) is

∆x =
2π

Bx
=

2π

2
�
ωmax
c − ωmin

c cos(φd)
� ≈ πc

2ω0
, (2.138)

∆y =
2π

By
=
Dy
4
.

Since cos(φd) is less than one, the actual theoretical resolution is better than the
approximation. For the resolution in y domain, a more conservative value ∆y = Dy

2 is
often used. Similarly, for a hyperbolic antenna, from the divergence angle (2.123) and ku
bandwidth (2.136), we have

By = 4kc sin(φd) =
2π

λc
4 sin(φd) (2.139)

where the kc =
ωc
c is the wave number corresponding to the carry frequency of the radar.

Thus the resolution for a hyperbolic radar in y domain becomes

∆y =
2π

By
=

λc
4 sin(φd)

(2.140)

or ≈ λc
2 sin(φd)

for a more conservative estimation.

2.1.6.1 Slow–time Compression Slow–time compression is used in both spot and
stripmap SAR for digital spotlighting and enhancing the reconstructed radar images. The
slow-time compression technique is based on Fresnel approximation that assumes a narrow
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bandwidth for the SAR system. The approximation is developed for far field assumption that

(yn − u)� Xc and |xn −Xc| ≈ Xc (2.141)

in other words

s
x2n + (yn − u)2 ≈ Xc. (2.142)

Using the Taylor series expansion of the distance of the nth target to the radar at the position
(0, u) and dropping the higher order terms, we have

s
x2n + (yn − u)2 ≈ xn +

(yn − u)2
2Xc

. (2.143)

It leads to the Fresnel approximation of the SAR spherical PM signal

exp
�
−j2k

s
x2n + (yn − u)2

�
≈ exp

�
−j2kxn − j k(yn − u)

2

Xc

�
(2.144)

From the definition of instantaneous frequency of the spherical PM signal (2.38), we have

Kun(u) =
∂
�
−2ksx2n + (yn − u)2�

∂u
≈ 2k(yn − u)

Xc
. (2.145)

Considering the reference signal from a unit reflector at (Xc, 0) for broadside target, it yields

s0(ω, u) = exp
�
−j2k

s
X2
c + u

2
�
≈ exp

�
−j2kXc − j ku

2

Xc

�
(2.146)

with an instantaneous frequency equal to

Ku0(u) ≈ −2ku
Xc

. (2.147)

The slow–time compression is realized by the slow–time matched filtering

snc(ω, u) = sn(ω, u)s
∗
0(ω, u)

≈ σn exp

�
−j2kxn − j k(yn − u)

2

Xc

�
exp

�
−j2kXc − j ku

2

Xc

�
≈ σn exp [−j2k(xn −Xc)] exp

�
j
2kyn
Xc

u

�
(2.148)

where the phase term is approximated as Kun(u)−Ku0(u) by ignoring a small constant
phase term −kynXc

under the far field assumption. For the finite synthetic aperture
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u ∈ [−L,L], the slow–time compressed signal in Doppler ku domain becomes

Snc(ω.ku) ≈ σn exp [−j2k(xn −Xc)]
2L

π
sin c

�
L

π

�
ku − 2kyn

Xc

��
. (2.149)

The target appears as a sinc-like blip at

ku =
2kyn
Xc

(2.150)

which leads to the target cross–range location in slow–time domain at range Xc

yn =
Xcku
2k

. (2.151)

The half of the main lobe of the sinc function yields the Doppler support bandwidth of the
slow–time compressed signal is 2π

L , that is

ku ∈ Ωnc =
�
2kyn
Xc
− π

L
,
2kyn
Xc

+
π

L

�
. (2.152)

The Doppler support bandwidth of the uncompressed signal Sn(ω.ku) is

Ωn = [2k sin(θn(L), 2k sin(θn(−L)] (2.153)

≈
�
2k(yn − L)

Xc
,
2k(yn + L)

Xc

�
.

If all the targets yn ∈ [−Y0, Y0] are considered, the Doppler bandwidth of slow–time
compressed signal becomes 4kY0

Xc
= 8πY0

λXc
, that is

ku ∈ Ωc ≈
�
−2kY0
Xc

,
2kY0
Xc

�
=

�
−4πY0
λXc

,
4πY0
λXc

�
. (2.154)

For the uncompressed signal, we have the Doppler bandwidth equal to 4k(Y0+L)
Xc

= 8π(Y0+L)
λXc

,
that is

ku ∈ Ω ≈
�
−2k(Y0 + L)

Xc
,
2k(Y0 + L)

Xc

�
(2.155)

=

�
−4π(Y0 + L)

λXc
,
4π(Y0 + L)

λXc

�
.

This leads to the restrictions on slow–time sampling interval

∆uc ≤ 2π

BΩc
=

λXc
4Y0

and ∆u ≤ 2π

BΩ
=

λXc
4(Y0 + L)

(2.156)

for the slow–time compressed signal and uncompressed signal respectively. We can see that
the sampling interval restriction for the slow–time compressed signal is much easier such that
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∆uc can be greater than∆u. From the definition of ∆u = vr
PRF , we can have the following

two desirable outcomes that PRF can be reduced or the carrier speed can be increased, if
∆uc is used to sample the slow–time compressed signal. The slow–time Nyquist rates also
indicate that a larger illuminated (2Y0) target area and longer (2L) synthetic aperture require
finer sampling interval..

For the squint case, the scene center is located at (Xc, Yc), therefore, we have

rn =
s
x2n + y

2
n and Rc =

s
X2
c + Y

2
c (2.157)

to represent the distance from radar location u = 0 to the nth target and scene center
respectively. Then, similarly, we have the slow–time compressed signal

sc(ω, u) = s(ω, u)s∗0(ω, u)

≈
[
n

σn exp [−j2k(rn −Rc)] exp
�
j
2k cos(θc)(yn − Yc)

Rc
u

�
(2.158)

where θc = arctan
�
Yc
Xc

�
is the squint angle. The reference signal is

s0(ω, u) = exp
�
−j2k

s
X2
c + (Yc − u)2

�
. (2.159)

The slow–time compressed signal in Doppler ku domain becomes

Sc(ω.ku) ≈
[
n

σn exp [−j2k(rn −Rc)]
2L

π
sin c

�
L

π

�
ku − 2k cos(θc)(yn − Yc)

Rc

��
.

(2.160)
The sinc–like blip for the nth target is now located at

ku =
2k cos(θc)(yn − Yc)

Rc
=
2k cos2(θc)(yn − Yc)

Xc
(2.161)

and its scale transform in cross–range domain is

yn =
kuRc

2k cos(θc)
+ Yc (2.162)

which can be reduced to the broadside result (2.151) when Yc = 0. Substituting the
yn ∈ [Yc − Y0, Yc + Y0] into equation (2.161), the compressed slow–time Doppler support
band becomes

ku ∈ Ωc ≈
�
−2kY0 cos(θc)

Rc
,
2kY0 cos(θc)

Rc

�
(2.163)

where half of the main lobe, π
L , of the sinc function is ignored. Therefore, the sampling
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interval in the cross–range domain must satisfy

∆uc ≤ 2π

BΩc
=

λRc
4Y0 cos(θc)

(2.164)

which is less restrictive than the one for uncompressed signal in the cross–range

∆u ≤ 2π

BΩ
=

λRc
4(Y0 + L) cos(θc)

. (2.165)

However, this is not true in stripmap SAR. Under the assumption that the scene center
is at (Xc, 0) (broadside), |u| � Xc and the nth target at (xn, yn) can only be observed by
the radar at the locations within synthetic aperture interval u ∈ [yn −Bn, yn +Bn] where
Bn = xn tanφd, the slow–time compressed signal stripmap SAR signal becomes

Sc(ω.ku) ≈
[
n

σn exp [−j2k(rn −Xc)]
2Bn
π
sin c

�
Bn
π

�
ku − 2kyn

rn

��
(2.166)

where Fresnel approximations of radar signals
x2n + (yn − u)2 =

s
x2n + y

2
n − 2ynu+ u2

≈ rn +
u2 − 2ynu
2rn

(2.167)

and reference signal s
X2
c + u

2 ≈ Xc + u2

2rn
(2.168)

are used. Compared with equation (2.160), L is replaced by Bn due to the change of
synthetic aperture interval length. For each target, the main lobe width of the sinc–like
function yields

kun ∈ Ωnc =
�
2kyn
rn
− π

Bn
,
2kyn
rn

+
π

Bn

�
. (2.169)

If we consider the entire observable target area for the radar locations

u ∈ [−L,L] = [−(Y0 +B), (Y0 +B)] , (2.170)

the bandwidth of the slow–time compressed signal Sc(ω.ku) becomes

ku ∈ Ωc =
�
−2kY0
rmin

− 2kB
rmin

,
2kY0
rmin

+
2kB

rmin

�
(2.171)

where π
Bn

is ignored. The support band Ωc depends on the type of radar and its bandwidth
and beamwidth. A conservative estimation of the slow–time Doppler bandwidth of the
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compressed stripmap SAR signal can be formed as

ku ∈ Ωc = [−2k sin θ0 max − 4k sinφd, 2k sin θ0 max + 4k sinφd] (2.172)

where

θ0 max = arctan

�
Y0
xmin

�
(2.173)

is the maximum aspect angle of the target area for the radar at u = 0. Since

φd = arctan

�
Bn
xn

�
(2.174)

is the beam divergence angle, then a conservative estimation

B

rmin
≈ 2 sinφd (2.175)

is used for rmin in the equation. Compared with the slow–time Doppler support band of the
uncompressed SAR signal S(ω.ku),

ku ∈ Ω = [−2k sinφd, 2k sinφd] (2.176)

the slow–time compressed SAR signal has a wider bandwidth. Therefore, the Nyquist
sampling restriction of the slow–time compressed SAR signal,

∆uc <
π

2kmax sin θ0 max + 4kmax sinφd
=

λmin
4 sin θ0 max + 8 sinφd

, (2.177)

is more tighter than the uncompressed SAR signal

∆u <
π

2kmax sinφd
=

λmin
4 sinφd

. (2.178)

In stripmap mode, even the sampled uncompressed SAR signal S(ω.ku) does not have
aliasing error, it must be upsampled prior to applying slow–time compression.

2.1.6.2 Digital Spotlighting In order to complete the stripmap image method, we need
to understand the technique referred to as digital spotlighting. Digital spotlighting is to
restrict the return radar signature within a specific target area. In the previous discussion, we
decide the Nyquist sampling interval based on the main lobe bandwidth of the radar radiation
pattern. The returned energy from the side lobes of the radiation pattern is considered to be
small. However, the side lobe energy will appear as aliasing error in the signal. The digital
spotlighting will suppress the radar energy outside the desired target area, such as the energy
from side lobes, to reduce aliasing error.

Under the assumption of narrow–beamwidth and narrow swath, that is rn ≈ Rc, we have
the slow–time compressed SAR signal (2.160) for a squint target area in the last section.
Equation (2.161) shows the location of the sinc–like blip for the nth target. The digital
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spotlighting is to suppress the SAR signal of the targets that are outside a desired target area,
say

y ∈ [Yc − Y0, Yc + Y0] and x ∈ [Xc −X0,Xc +X0] . (2.179)

The implementation of range (x) and cross–range (y) gating is usually done in (t, ku) domain
using polar format processing. Considering the slow–time compressed signal shifted to
scene center (Xc, Yc),

sc(ω, u) = s(ω, u)s∗0(ω, u)

= P (ω)
[
n

σn exp
k
−j2k

s
(Xc + xn)2 + (Yc + yn − u)2

l
(2.180)

P ∗(ω) exp
k
j2k
s
X2
c + (Yc − u)2

l
.

The following approximation is used in the polar format processing.s
(Xc + xn)2 + (Yc + yn − u)2 =

s
X2
c + 2Xcxn + x

2
n + y

2
n + 2yn(Yc − u) + (Yc − u)2

=
s
X2
c + (Yc − u)2 + cos θ0(u)xn +

sin θ0(u)yn + · · ·
≈

s
X2
c + (Yc − u)2 + cos θ0(u)xn + (2.181)

sin θ0(u)yn

where the high order terms are ignored and

θ0(u) = arctan

�
Yc − u
Xc

�
(2.182)

is the aspect angle of the radar at location u with respect to the center of target area. Using
the approximation, equation (2.180) can be simplified as the target function in (kx, ky)
domain,

sc(ω, u) ≈ |P (ω)|2
[
n

σn exp [−j2k cos θ0(u)xn − j2k sin θ0(u)yn]

≈ |P (ω)|2
[
n

σn exp [−jkx(ω, u)xn − jky(ω, u)yn] (2.183)

= F (kx, ky)

where

kx(ω, u) = 2k cos θ0(u) and ky(ω, u) = 2k sin θ0(u) (2.184)

are the polar function mapping from (ω, u) to (kx, ky).
In narrow beamwidth situation, u � Rc, the aspect angle can be simplified as a linear
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function of u,

θ0(u) = arctan

�
Yc − u
Xc

�
≈ arctan

�
Yc
Xc

�
− u

Xc

≈ θc − cos θc
Rc

u. (2.185)

The polar function mapping (2.184) in narrow beamwidth becomes

kx(ω, u) = 2k cos

�
θc − cos θc

Rc
u

�
= 2k

�
cos θc cos

�
cos θc
Rc

u

�
+ sin θc sin

�
cos θc
Rc

u

��
≈ 2k cos θc (independent of u) (2.186)

and

ky(ω, u) = 2k sin

�
θc − cos θc

Rc
u

�
= 2k

�
sin θc cos

�
cos θc
Rc

u

�
− cos θc sin

�
cos θc
Rc

u

��
≈ 2k

�
sin θc − cos

2 θc
Rc

u

�
. (linear function of u) (2.187)

In the case of narrow beamwidth and narrow bandwidth, that is |k − kc|� kc (kc is the
wavenumber at the carrier frequency), the polar function mapping can be further simplified
by k ≈ kc in some of the terms with smaller quantities

kx(ω) ≈ 2k cos θc = 2cos θc
c

ω, kx ← ω (2.188)

and

ky(u) ≈ 2kc
�
sin θc − cos

2 θc
Rc

u

�
, ky ← u (2.189)

where squint angle θc is assumed to be much smaller than 1 (near–broadside case). The
polar function mapping becomes simple linear scale mapping from sc(ω, u) to F (kx, ky)
without the need of interpolation. The target function reconstruction can be realized by
simply performing two dimensional inverse Fourier transform of the slow–time compressed
signal sc(ω, u) = F (kx, ky). We shall notice that the approximation can cause some of the
geometric distortion in the reconstructed target function.

In a more accurate analysis of polar format processing, the location of nth target is
expressed in a polar spatial coordinates [θn(0), rn] where θn(0) is the aspect angle from the
radar at u = 0 to the nth target and rn is the distance from the radar to the target. The target
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located at [θn(0), rn] should appear at

tn ≈ 2rn
c

and kun ≈ 2kc sin [θn(0)− θc] (2.190)

in the polar format processed data (2.183) at the (t, ku) domain. Since

xn = rn cos θn(0) and yn = rn sin θn(0), (2.191)

then we have

xn =
ctn
2
cos [φn + θc] and yn =

ctn
2
sin [φn + θc] (2.192)

where

φn = arcsin

�
kun
2kc

�
= θn(0)− θc (2.193)

is the angular slow–time Doppler. Therefore, a two–dimensional Fourier transform of the
polar format processed data sc(ω, u) to (t, ku) domain can be used for geometric correction,
motion compensation and digital spotlighting. Note ω → t is the inverse Fourier transform
and u→ ku is the slow–time Fourier transform.

The digital spotlighting the desired target area (2.179) can be realized by a digital
spotlight filter in (t, ku) domain

W (t, ku) =

�
1 for |x−Xc| < X0 & |y − Yc| < Y0
0 other wise

(2.194)

where

x =
ct

2
cos [φ+ θc] and y =

ct

2
sin [φ+ θc] (2.195)

where φ = arcsin( ku2kc ) is the angular slow–time Doppler at the carrier frequency
(narrow–bandwidth assumption). For wide–bandwidth SAR system, one–dimensional
interpolation has to be used for the mapping of φ = arcsin(ku2k ) from ku domain to φ
domain. The digital spotlighted slow–time compressed signal can be obtained by following
processes.

I). fd(t, ku) =W (t, ku)Fω→t;u→ku {sc(ω, u)} spotlight filter (2.196)

II). Scd(ω, ku) = Ft→ω {fd(t, ku)} spotlighted in (ω, ku) (2.197)

III). scd(ω, u) = F−1ku→u {Scd(ω, ku)} digital spotlighted (2.198)

Between the process II). (2.197) and III). (2.198), an optional zero padding in the ku domain
can be applied to up–sample the data from the sampling interval ∆uc to a finer sampling
interval∆u.
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2.1.6.3 Subaperture Digital Spotlighting The above discussion of full aperture digital
spotlighting is based on the assumptions in (2.190). We assume the radial distance rn from
the nth target to the radar located at the center of synthetic aperture u = 0 to be the constant
radial distance for all the radar locations u ∈ [−L,L]. The fast–time of arrival tn would be
different for a large synthetic aperture. This problem can be addressed by dividing the entire
aperture 2L intoN subapertures of length 2Ls such as

[Yi − Ls, Yi − Ls] and Yi = (2i− 1)Ls − L (2.199)

where i = 1, 2, · · · , N . The center of target area for the ith subaperture is located at

(Xc, Yc + Yi) (2.200)

and the squint angle

θci = arctan

�
Yc + Yi
Xc

�
. (2.201)

Now the fast–time of arrival for each subaperture can be approximated as constant within
each subaperture

tni ≈ 2
s
x2n + (yn + Yi)

2

c
(2.202)

The digital spotlighting process step I). (2.196) is performed only within each subaperture

I). fdi(t, ku) =Wi(t, ku)Fω→t;u→ku {sc(ω, u)} ; u ∈ [Yi − Ls, Yi − Ls] (2.203)

where the spotlight filter for ith subaperture is

Wi(t, ku) =

�
1 for |x−Xc| < X0 & |y − Yc − Yi| < Y0
0 other wise

(2.204)

and

x =
ct

2
cos [φ+ θci] and y =

ct

2
sin [φ+ θci] . (2.205)

Followed by step II). (2.197) and step III). (2.198) with zero–padding if necessary. The
N subapertures of digital spotlighted SAR data are then appended to each other for form
scd(ω, u) for SAR imaging. The smaller subaperture 2Ls improves the estimation of
fast–time of arrival. The proper subaperture length 2Ls should be about 100th of the
slow–time Doppler support band of the compressed SAR signal sc(ω, u) in (2.163). That is

π

Ls
≈ 2kminY0 cos(θc)

100 ·Rc (2.206)

and

Ls ≈ 25Rcλmax
Y0 cos(θc)

. (2.207)
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For a planar radar, the slow–time Doppler support band of the compressed SAR signal is
about 8π

Dy
(2.136) which leads to

π

Ls
≈ 4π

100Dy
and Ls ≈ 25Dy. (2.208)

In stripmap SAR imaging, both full aperture or subaperture digital spotlighting can be
applied. However, there are two reasons to use subaperture: the first one is to provide
an accurate digital spotlight filter and the second one is the relax the Nyquist sampling
restriction for the slow–time compressed SAR signal, such that

∆uc ≈ ∆u = λmin
4 sinφd

. (2.209)

There is no need for interpolation before slow–time compression. In stripmap mode, the
broadside SAR is often used, that is Yc = 0. The center of target area for the ith subaperture
is located at

(Xc, Yi) (2.210)

and the squint angle

θci = arctan

�
Yi
Xc

�
. (2.211)

The digital spotlighting process step I). (2.203) is exactly the same only with slightly
changed spotlight filter for ith subaperture

Wi(t, ku) =

�
1 for |x−Xc| < X0 & |y − Yi| < Y0
0 other wise

(2.212)

and

x =
ct

2
cos [φ+ θci] and y =

ct

2
sin [φ+ θci] . (2.213)

If the full aperture digital spotlight is used, up–sampling must be performed on SAR signal
s(ω, u) before slow–time compression.

2.1.6.4 Stripmap Imaging Algorithm To summarize the discussion of stripmap imaging
method, a eight–step strip SAR imaging algorithm is presented here.

Step 1: Perform discrete fast–time matched filtering of the received signal such as

sM(t, u) = s(t, u) ∗ p∗0(−t) (2.214)

where p0(t) = p(t − Tc) is echo signal from a unit reflector at the center (Xc, 0) of range
swath which is invariant for the stripmap SAR. And Tc = 2Xc

c is referred to as the reference
fast–time point. We need to decide the fast–time sampling duration of the radar signal
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t ∈ [Tstart, Tend] where

Tstart =
2rmin
c
, Tend =

2rmax
c

+ Tp. (2.215)

[rmin, rmax] is the SAR range gate which defines closest and farthest radial distance of the
radar swath. Tp is radar pulse width. We know the range gate is function of radar frequency

ω ∈ [ωmin,ωmax] = [ωc − ω0,ωc + ω0]. (2.216)

The largest radar range swath equal to [Xc −X0max,Xc +X0max]whereX0max ≈ λmaxXc

Dx

occurs at the lowest fast–time frequency ( 2π
λmax

= kmin) and Dx is the effective diameter of
a planar radar. Therefore, the range gate can be decided as

rmin = Xc −X0max, rmax =
s
(Xc +X0max)2 +B2max (2.217)

where Bmax ≈ (Xc+X0max)λmax
Dy

is the maximum half–width cross–range beamwidth for a
planar radar with an effective diameterDy. The fast–time sampling interval must satisfy the
Nyquist sampling rate∆t ≤ π

ω0
for a radar bandwidth 2ω0. Therefore, the (even) number of

discrete range bins is equal to

N = 2

�
Tend − Tstart

2∆t

�
. (2.218)

The reference fast–time point depending on the range swath is often selected as

Tc =
Tend − Tstart

2
. (2.219)

Therefore, the matched filter result, sM(t, u), has N
2 + 1 samples corresponding to the

reference fast–time point Tc.
Step 2: Perform the fast–time and slow–time processing. The fast–time processing is to

apply Fourier transform

s(ω, u) = Ft→ω {sM(t, u)} . (2.220)

The slow–time processing include digital spotlighting and slow–time compression. If

Tend − Tstart < 4X0
c · cos θmax

where θmax = arctan
�
Yc+Y0+L
Xc−X0

�
is the largest slow–time Doppler frequency, then zero–

padding must be performed such that the data length is at least equal to N∆t = 4X0

c·cos θmax
before the Fourier transform (2.220) from t to ω. This zero–padding is to make sure there are
no aliasing errors (sufficient frequency resolution) in ω so as in kx domains. If full aperture
digital spotlighting of the data is expected, the data must be first up–sampled from ∆u to
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∆uc before performing slow–time compression

sc(ω, u) = s(ω, u)s
∗
0(ω, u). (2.221)

Then either perform full aperture digital spotlighting (2.196) or subaperture digital
spotlighting (2.203) followed by procedures (2.197) and (2.198) to produce scd(ω, u) a
slow–time compressed and digital spotlighted SAR signal. In the case that the size of the
target area in the cross–range is greater than the length of the synthetic aperture, that is
Y0 > L, zero–padding sc(ω, u) in the cross–range to u ∈ [−Y0, Y0] is required before digital
spotlight filter (2.196) or (2.203). This zero–padding is to guarantee sufficient frequency
resolution in ku domain without aliasing errors. Perform slow–time decompression with
down sampling if up–sampling was applied before for full aperture digital spotlighting to
produce

sd(ω, u) = scd(ω, u)s0(ω, u). (2.222)

sd(ω, u) is a digital spotlighting enhanced version of SAR signal s(ω, u).
Step 3: Perform Fourier transform of sd(ω, u) in cross–range u, it yields

Sd(ω, ku) = Fu→ku {sd(ω, u)} . (2.223)

It is a discrete version of digital spotlighted SAR signal Sd(ωn, kum).
Step 4: In the case of Y0 < L (in most of case L = Y0 +B), subsampling in Doppler

domain ku can be performed to reduce the computational burden and data size. That is
because the data sampling space (resolution) in ∆ku = π

L due to u ∈ [−L,L]. However,
the actual target area in cross–range is u ∈ [−Y0, Y0]. The Nyquist sampling restriction
is ∆ku ≤ π

Y0
. Therefore, if L = 2Y0, then we can subsample by 2 (skip a sample) in ku

domain.
Step 5: As said in ‘‘Step 1’’, sM(t, u) has N

2 + 1 samples and the first sample
corresponding to the reference fast–time point Tc. However, the definition of DFT assumes
that the first sample is at t = 0 which causes a data shift t+ Tc. We need to correct this by a
phase delay

Sd(ω, ku) exp(−jωTc) (2.224)

such that the data is shifted back to actual t = 0 in fast–time domain.
Step 6: Perform base band conversion of the target area to obtain the target function

F (kx, ky) = Sd(ω, ku) exp(−jωTc) exp(j
s
4k2 − k2u ·Xc (2.225)

where kx =
s
4k2 − k2u and ky = ku in discrete samples

kxmn =
s
4k2n − k2um and kymn = kum. (2.226)

This nonlinear transformation converts the sampled SAR signal from an evenly spaced
sampling domain (ωn, kum) to an unevenly spaced sampling domain (kxmn, kymn).
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Step 7: Perform spatial frequency interpolation to form a uniform grid in the following
spatial frequency support regions:

kx ∈ [kxmin = min {kxmn} , kxmax = max {kxmn}] and

ky ∈ [kymin = min {kymn} , kymax = max {kymn}].

Then the uniform grid spacing are decided according to the radar footprint 2X0 by 2Y0 such
that

∆kx =
π

X0
and ∆ky =

π

Y0
. (2.227)

The total numbers of samples to be interpolated equal to

Nx = 2

�
kxmax − kxmin

2∆kx

�
and Ny = 2

�
kymax − kymin

2∆ky

�
. (2.228)

Now perform spatial frequency interpolation algorithm using the unevenly spaced data
points F (kxmn, kymn) to form an evenly sampled F (kx, ky) over the Nx by Ny uniform
grid.

Step 8: Take the 2-D inverse discrete Fourier transform of the spatial frequency
interpolated target spectrum F (kx, ky) to yield a target function

f(x, y) = F−1kx,ky→x,y (F (kx, ky)) (2.229)

which is evenly sampled with the following uniform sampling interval

∆x =
2π

Nx∆kx
=
2X0
Nx

and ∆y =
2π

Ny∆ky
=
2Y0
Ny

. (2.230)

2.1.7 Motion Compensation

All of the target function reconstruction algorithms presented assumes that the radar-carrying
vehicle maintains a constant velocity and maintains a constant linear motion path within
only a few wavelengths of the radar signal. These nonlinear motion components (also called
motion errors) cause ‘‘fuzziness’’ in the SAR image, which must be compensated for in order
to arrive at the optimal image. Motion compensation is usually done in two stages: first
using global positioning system (GPS), and second using in scene targets.

The first step in the development of the motion compensation equations is the modeling
of the motion errors. The motion errors in the range x and cross–range y domain can be
represented as

[xe(u), u+ ye(u)] . (2.231)

Now if we place a unit reflector at (xn, yn), the received SAR signal with motion error
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becomes

sn(ω, u) = exp

�
−j2k

t
(xn − xe(u))2 + (yn − u− ye(u))2

�
(2.232)

as contrast to the case without motion error sn(ω, u) = exp
k
−j2ksx2n + (yn − u)2l.

Now we can rewrite the equation

sn(ω, u) = aen(ω, xn, yn − u) exp
k
−j2k

s
x2n + (yn − u)2

l
(2.233)

where

aen(ω, xn, yn − u) = exp [−j2kren(u)] (2.234)

is called the motion phase error function and

ren(u) =
s
x2n + (yn − u)2 −

t
(xn − xe(u))2 + (yn − u− ye(u))2 (2.235)

is called the radial error for the nth target. Now if the fluctuations of the motion phase
error function are much smaller than the error free SAR signal, we can model the phase
error function of the signal as a filter in the spatial frequency domain (kx, ky). This can be
represented as

Hen(kx, ky) = aen(ω, xn, yn − u) (2.236)

= exp [−j2kren(u)]

where 2k =
t
k2x + k

2
y and u = yn− ky

kx
xn. If a GPS sensor is placed with the radar system,

an estimate of the vehicle trajectory can be made and from this information, the motion error
can be estimated.

The image created using the GPS based motion compensation may still have motion
errors because of the in accuracy of the GPS system. The second step is to further refine
the motion compensation using in scene targets. Suppose there exists a distinct target (say a
fiducial reflector or a communication tower) in the imaging scene. The SAR image signature
(peak) of the distinct in–scene target can be identified at location (xl, yl). If we extract the
SAR signature as hel(x, y) from the scene, that is to shifted it by (−xl,−yl). Since we know
there is motion phase error included in this SAR signature, the extracted feature now only
contains radial error in the phase (2.235). The two–dimensional Fourier transform

Hen(kx, ky) = Fx,y→kx,ky {hel(x, y)} (2.237)

forms motion error filter function for the in–scene target. In a narrow beamwidth case, the
radial motion error for the in–scene target can be approximated by

ren(u) ≈ xe(u) cos θc + ye(u) sin θc (2.238)
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where θc is the average target squint angle. For stripmap case, usually θc = 0, then
ren(u) ≈ xe(u). That shows the motion error is spatially invariant in the scene. Therefore,
the in–scene target motion compensation for the narrow beamwidth radar can be realized by

f(x, y) = F−1kx,ky→x,y {F (kx, ky)H∗el(kx, ky)} . (2.239)

2.2 Prior Works in SAR Parametric Study Reviewed

In this section, we will outline the past research related to SAR parametric and automatic
target recognition (ATR) study. The field of SAR and ATR are relatively new. We found most
of the works are in the past decade. From the brief summary of the SAR imaging algorithms,
we can see there are many variations in SAR imaging technology from type of radar, radar
parameters to approximation methods. Some of the key radar parameter variations also
known as sensor operating conditions (OC’s) include

1. Type of radar antenna which has influence on parameters like divergence angle
(beamwidth), radiation pattern, resolution, radar footprint, etc.

2. Radar frequencies and bandwidth which also has influence on parameters of resolution,
radiation pattern, radar footprints, etc.

3. Antenna polarization
4. Depression (elevation) angle
5. Squint angle
6. Synthetic aperture length
7. Pulse Repetition Frequency (PRF)
8. Target function reconstruction algorithms based on different approximation methods
9. Image enhancement technologies such as digital spotlighting, motion compensations and

others
10. Radar waveforms such as pulse, chirp and white noise.
11. Noises

Any combinations of those SAR parameter variations can have significant impact on
the appearance, resolution, contrast, signature locations and geometric distortions in SAR
image. However, there were no prior systematic research to address how those sensor
parameter variations would affect the performance of ATR algorithms either qualitatively
nor quantitatively. In two–dimensional image based SAR ATR algorithms, the database is
build around the same collection of data. The training data set and testing data set are from
the same data acquisition platform. There are no variations of sensor OC’s in either data
set collections or ATR algorithms development and testing. For example, in MSTAR data,
the only sensor variation is a collection of data sets in two different depression angles. It
is difficult and expensive to collect data sets that cover a broad aspects of sensor operating
conditions. In addition, the existing image ATR algorithms never have to face the data from
different SAR sensor platforms with different sensor OC’s. The same target under the same
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target OC’s and the environmental OC’s will appear significantly different in SAR images
with different variations of sensor OC’s. In our literature review, we have collected any
research papers that covers the studies on one or more sensor parameters. The studies of
sensor parameters that we reviewed cover not only ATR but also in image formation. We
will organize our review according to particular sensor parameters and its influence on ATR
or image formation. As we stated earlier, not all the sensor parameters are addressed by prior
research.

2.2.1 Frequency

The frequencies used in the radar pulse is one of the sensor parameters that has the largest
effect on SAR image formation. The frequency of the electromagnetic radiation used by the
radar affects the scattering of the wave by the object and the penetration of the radar wave.

The wavelength of the excitation, which is equal to the inverse of the frequency of the
radar wave, determines several of the scattering characteristics of the target. Radar imagery
is principally separated from optical imagery by the frequency of the radiation used for
imaging. For a complex object, a physical feature of that object will only be visible if the size
of the feature is larger than the wavelength used to image it. Since radar generally operates
at lower frequency than optical systems, many of the details of a complex object that appear
in an optical image will be blurred by the radar pulse to the level below perception in the
image. Lower frequencies used in the radar pulse have the advantage of being able to
penetrate several mediums. Low frequency radar has been developed to image objects in
vegetation (FOliage PENetrating radar or FOPEN) and image objects underground. (Ground
PENetrating radar or GPEN)

The Foliage penetrating radar use UHF and VHF frequencies along with ultra wide
bandwidth (UWB) and ultra wide angle signal properties which dramatically changes the
phenomenology observed compared to traditional SAR. The speckle observed in traditional
SAR images is greatly reduced in FOPEN SAR image due to the increase in the wavelength
of the radiation that causes one dominant scatter to be imaged per cell. The man made targets
also change in appearance in the image because of the increased in the wavelength of the
radiation used. The dominant target return is generally from the entire body of the target and
has the effect that the radar cross section (RCS) of the target is more strongly a function of
its orientation [3] .

Experiments were conducted by the Army Research Lab that demonstrated the ability
of FOPEN radar to detect a complex target such as vehicle and canonical shapes in heavy
foliage [20] . The experiment was limited due to the fact only one vehicle was used, and
a comparison of the results with traditional SAR frequencies was not made. The Army
Research Lab also demonstrated that lower frequencies (130-330 MHz) could provide
sufficient ground penetration to detect buried (6 inches) antitank mines (M-20) where the
tradition X band SAR was unable to detect the mines [17] . The experiments did show
however, that the lower frequencies used for ground penetration decreased resolution enough
that the buried smaller anti-personnel mines (Valmara 69) went undetected. The second
experiment was of limited benefit to SAR ATR research because complex targets were not
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used and hence impossible to access the effects of classification with frequency.
The best illustration of the differences of SAR imagery with frequency is the development

of the model representing a conventional size trihedral at traditional SAR frequency vs SAR
radar operating at FOPEN or GPEN radar frequency. The conventional sized trihedral are
important in SAR imagery because they are used in the calibration of SAR systems and
many complex targets can be approximated as a sum of trihedral and dihedral scatters.

For traditional SAR frequencies which include X, C, and L bands (in GHz range) the
mathematical model developed to represent the conventional sized trihedral are based on
the geometric theory of diffraction (GTD) [15] . The GTD allows the representation of a
complex object as the sum of individual scattering centers (SC’s). The GTD says if the
wavelength of the radar radiation is small relative to the extent of the object, then the
reflected radiation can be well approximated as contributions from electrically isolated
scattering centers.

Now lets outline the mathematical model developed by Gerry, et. al. in 1999 [15] , which
will provide representation of an object scattering center using frequency and aspect angle of
the radar and parameters of the target. The radar position will be defined by the aspect angle
φ, which is defined counterclockwise from the x (range) axis. The mathematical model will
not only use GTD but will also assume far zone backscattering of the radar wave, which
means the incident radar wave, will assume to be planar when it reaches the target. For
developing the mathematical model using the GTD under the far zone backscattered field
assumption, we need to make three more assumptions.

The first assumption is that the received radar wave of a far field scattering center (SC)
shows linear phase dependence, that is the phase of a SC at a given aspect angle is only a
function of the position of the SC. The assumption has the affect of excluding the effect of
disperse scattering mechanism such creeping waves and resonant cavities. The backscattered
radiation for the nth scattered can be defined as

Esn(k,φ) = Sn(k,φ) exp [j2k(�re · �rn)] (2.240)

where k = ω
c is the wave number and �re is the unit vector in the direction of scattering field

as well as �rn = (xn, yn) is the position of nth SC (target) projected to the image plane. In
the development of this and all other equations, the term exp(jωt) is assumed in the equation
and is suppressed for convenience.

The second assumption is that the amplitude of the received radar wave depends on
frequency. This assumption is govern by the high frequency approximation given by GTD.
Using the above assumption, and a conservation of energy argument, it can be shown that the
amplitude of the backscattered radiation as function of frequency for many different types of
geometries can be approximated as

(jk)α (2.241)

when α = 1 for flat plates at broadside or dihedral; α = 1
2 for singly curved surface

reflection; α = 0 for point, sphere, or straight edge; α = −12 for edge diffraction; and
α = −1 for corner diffraction.
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The last assumption is that the amplitude dependence of the received radar wave on
aspect angle can be characterized either as spatially distributed or localized. A localized SC,
which includes trihedral corners and edge diffraction, can be assumed to be a point source in
space with slowly varying amplitude as the aspect angle changes. The slowly varying SC’s
can be modeled with a damped exponential. Using some physical insight a mathematical
model was developed and can be written as

Sn(f,φ) = An exp (−ωγn sinφ) (2.242)

where γn is an empirical quantity with no physical interpretation. Distributed SC’s, which
include dihedrals, and cylinders, can be assumed to vary with aspect angle approximately
equal to the sinc function. A distributed SC can be represented as

Sn(f,φ) = An sin c
�ω
c
Ln sin(φ− φn)

�
(2.243)

where Ln is the length and φn is the orientation angle of the scatter. Combing the two types
of scattering mechanisms form the complete model for an individual scattering center and
can be written as

Esn(k,φ) = An ·
�
j
ω

ωc

�αn
sin c

�ω
c
Ln sin(φ− φn)

�
exp (−ωγn sinφ) (2.244)

exp

�
j
2ω

c
(xn cosφ+ yn sinφ)

�
where Ln = 0 if the SC is localized and γn = 0 if the SC is distributed. The total radar
return is simply the summation of the individual SC for the total of P scattering centers

Es(k,φ) =
P[
n=1

Esn(k,φ). (2.245)

Now for convenience, we shall take the mathematical model from the frequency aspect
domain to the image domain using the 2-D inverse Fourier transform. This can be done in
four steps. The first step in the transformation is to use some approximations to simplify the
amplitude dependence functions by using the approximation

kαn ≈ exp(−ωrn) (2.246)

where rn is an estimated damping factor. Then we let the term jαnbe included in the
complex amplitude An. The second step involves changing the polar coordinates of the
model into Cartesian coordinates using the transform

ωx = ω cosφ and ωy = ω sinφ. (2.247)

The transformation assumes the data is sufficiently narrow bandwidth that simple
interpolation to rectangle grid is possible or in other words with small angle spans,
ωrn ≈ ωxrn. The third step involves using window functions in the frequency and aspect
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angle domain to suppress side lobes (similar to the digital spotlighting). The window
functions are assumed separable and can be written as

W (ωx,ωy) =Wx(ωx)Wy(ωy) (2.248)

where

Wx(ωx) =
P[
p=1

Bx(p) exp(jωxp)

Wy(ωy) =

Q[
q=1

By(q) exp(jωyq)

are the window functions which can be Hamming, Taylor, or rectangular functions. The last
step in the transformation is using the 2-D inverse Fourier transform to move into the image
domain

esn(tx, ty) =

] ωx2

ωx1

] ωy2

ωy1

An

P[
p=1

Q[
q=1

Bx(p)By(q) sin c
�
Ln cosφn

c
(ωy − ωx tanφn)

�
exp

�
ωy[−γn + j(

2yn
c
+ q + ty)]

�
exp

�
ωx[−rn + j(2xn

c
+ p+ tx)]

�
dωxdωy (2.249)

where ωx1and ωx2 are first and last frequencies of ωx and likewise for ωy. Now the equation
can be solved for a trihedral using the fact that the trihedral is a localized scatter, that is
Ln = 0,

esn(tx, ty) = An

P[
p=1

Q[
q=1

Bx(p)By(q) exp

�
ωyc[−γn + j(

2yn
c
+ q + ty)]

�
· exp

�
ωxc[−rn + j(2xn

c
+ p+ tx)]

�
· sinh c

�
Ωx
2
[−rn + j(2xn

c
+ p+ tx)]

�
· sinh c

�
Ωy
2
[−γn + j(

2yn
c
+ q + ty)]

�
(2.250)

where

Ωx = ωx2 − ωx1 and Ωy = ωy2 − ωy1

ωxc =
ωx2 + ωx1

2
and ωyc =

ωy2 + ωy1
2
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sinh c(x) =
sinh(x)

x
.

Although the above model provides results that agree very well for data collected at
traditional SAR frequencies, the model quickly diverges when the data is collected using
FOPEN and GPEN radar frequencies. The FOPEN and GPEN radars operate at frequencies
in the VHF or low UHF ranges (MHz range) and use a wide-bandwidth radar pulse to
achieve the desired resolution at the lower frequencies. The model just developed which
serves as a basis for multiple SAR ATR algorithms makes use of the narrow frequency bands
and the small wavelength of the radar wave to image the conventional size trihedral. Neither
of these assumptions are true for the FOPEN or GPEN cases. The conventional size trihedral
can no longer be modeled using the GTD. The received radar pulse must be modeled using
numerical algorithms such as method of moments (MOM). The modeling of the trihedral is
further complicated by the fact that the wavelength of the VHF and low UHF radiation is so
large compared to conventional sized trihedral that the ground–air interference can no longer
be separated from the individual trihedral. This should also provide major problems with
complex objects consisting of multiple interfering structures.

The development of the mathematical model for the received radiation from a
conventional size trihedral begins with some nasty electromagnetic equations [14] . Lets
begin by writing the equation for the electric field in spatial location r = (x, y, z) produced
by a surface current at a different spatial location r3 = (x3, y3, z3) as follows:

E(r) =

�
−jωµ(r)I + 1

jωε(r)
∇∇

�
·
]
S3
G(r, r3)J(r3)dS3 (2.251)

where E(r) is the electric field at spatial location r, J(r3) is the surface currents produced at
r3, I is the unit dyadic, µ(r) is the permeability, ε(r) is the permittivity of the inhomogeneous
background, andG(r, r3) represents the dyadic Green’s function for the background medium.
Now lets assume the 3-D trihedral is a perfect electric conductor (PEC) and also assume far
zone backscattering. The electric currents induced on the surface of a PEC trihedral can be
solved by MOM techniques. In the case of the electric field in free space, the following
simplifications can be made:

µ(r) = µ0, ε(r) = ε0

and

G(r, r3) = (xx+ yy + zz)
exp(−jk0|r − r3|)

4π|r − r3| . (2.252)

Then a triangular patch discretization of J(r3) is performed. The nonzero elements of
G(r, r3) can now be represented as a Sommerfield integral, which has the form

f(ξ, z, z3) =
1

2π

] ∞
0

f̂(kp, z, z
3)J0(kpξ)kpdkp

where ξ =
s
(x− x3)2 + (y − y3)2 + (z − z3)2. The developed equation has the solution
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kernels, which in themselves are highly oscillatory. The numerical solution of the equation
can be formed using the Weyl identity, which is

exp(−jkR)
4πR

=
1

2π

] ∞
0

1

j2kz
exp[−jkzh(z, z3)]J0(kpξ)kpdkp (2.253)

where

k =
t
k2p + k

2
z and R =

s
(x− x3)2 + (y − y3)2 + h2(z − z3).

Now assume the soil can be represented as a general layered medium, so we can
approximately evaluate the integral for a source observed in layer i by

f̂(kp, z, z
3) =

exp [−jkzig(z, z3)]
j2kzi

ĥ(kp) (2.254)

=
exp [−jkzig(z, z3)]

j2kzi

%
lim
kp→∞

ĥ(kp) +
M[
m=1

am exp(−kzibm)
&

where am and bm are estimated along appropriate line in complex kzi plane using Prony’s
method. The above method is applied separately for each components of the Green’s
function dyadic. Then by placing (2.254) into the Sommerfield equation in terms of sum of
components where each component can be integrated in closed form.

The problem of SAR ATR using FOPEN frequencies has been preliminarily attacked
using simple scattering physics [2] . The approach uses computational electromagnetic
algorithms to generate signatures and match filter banks to span the target space. The FOPEN
SAR ATR problem posses special problems due to the fact that at FOPEN frequencies
objects are made up of few scatters which vary usually with angle or polarization.

The first stage of the algorithm by Mark R. Allen in 1996 deals with the detection of
man–made targets from clutter. The initial detection stage models all man–made targets
as a long principle dihedral formed between the side of target and the ground. The radar
response of a dihedral at FOPEN is a single narrow peak in azimuth angle whose power
varies according quadratic function of frequency with polarization response ofHH = V V
and zero cross polarization. The result of this is a line segment in the SAR image whose
length is proportional to the physical length of the object. The phase of this line will be a
bi-linear function whose slope depends on the relative orientation of the radar to the target.
Non-man made objects, such as tree trunks, are modeled as lossy vertical cylinders, which
has an RCS that is a uniformly distributed function in azimuth angle. The assumption causes
the trees to appear as point like responses in the SAR images. The stage is performed by the
matched filter image formation (MFIF) subunit. MFIF uses matched filters constructed from
computational electromagnetics spanning various azimuth angles to search each pixel in the
test image.

The second stage is formed by the complex spatial matched filtering (CSMF) subunit.
The second stage uses the same model as the first stage but is designed to match all pixels in
the image corresponding to the target rather than one pixel at a time. The CSMF subunit uses
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the computational electromagnetic calculated signatures from various dihedrals at various
orientations. The actual identification is performed through a successive level of recognition
using greatest likelihood test. The process so far has only been presented in theory with no
published testing of the algorithm using real or simulated data.

There are several more papers dealing with SAR imaging formation, enhancement and
modeling with ultra–wide bandwidth FOPEN radar signal [32] [35] [42] and [45] . In
the sense of parametric study, those paper address the problems and modeling techniques
associated with radar signals in large frequency variation (wide bandwidth and very low
frequency). Mostly, we just view them as other type of radar signal. However, the changing
in modeling and imaging formation techniques discussed in those paper can help as
understanding the effects of frequency variation. There is another set of paper collections
dealing with target detections using ultra–wide bandwidth (UWB) FOPEN radar [7] [23]
[34] and [47] . Those papers discussed detection of targets in foliage or under ground using
UWB radar. Those papers utilizing the frequency variation to detect targets, however none
of them addressing the ATR problems. In conclusion, we have not found any research paper
to deal with ATR performance under the influence of radar frequency variation. However,
some of the paper discussed affects of frequency variation in image formation that may have
some indirect link to the performance of an image based ATR algorithms.

2.2.2 Polarization

Another sensor parameter which has an enormous effect on the SAR image, is the
polarization used for the radar pulse. The polarization of the electromagnetic radiation used
by the radar affects how the geometry of the object will scatter back the radiation from the
radar.

The polarization of the radar pulse as well as the received wave can take on numerous
forms. The radar system for MSTAR uses HH polarization, which means the transmitted
radar wave is horizontally polarized and the receiver radar will record reflected horizontally
polarized radiation. A SAR system can be set up to use HH, HV , V H, V V , or even a
combination of polarizations. The use of multiple polarizations clearly has a beneficial
effect on SAR ATR systems by increasing the amount of information that the radar receives
from the scene. When all polarizations are used to form the image, the object in the imaging
scene become clearer, and the edges become sharper because the data from HH and HV
polarizations, for example, fill in the areas of objects and edges that do not register in the
V V polarized data. The potential benefits of using data with multiple polarizations seem to
be striking but largely ignored in the published SAR ATR literature.

The mathematical modeling of polarization seems to always attack the problem by
using the general equations and vectorizing them to include multiple polarizations. The
mathematical models developed earlier for Spot and Strip SAR can be modified to include
multiple polarizations by simply using matrices and vector in the pervious equations with the
justification that the equations were developed without knowledge of the polarization used.
So defining one equation asHH polarization, a second equation for V V polarization can be
defined with the same form because polarization was never mention as a parameter.
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The biggest and most complete work that was found in the public SAR ATR literature
using polarization was from Lincoln Laboratory. Lincoln Laboratory used their SAR ATR
algorithm to evaluate targets imaged at a singleHH polarization verses targets imaged using
three polarizations (HH, HV , V V ) [30] . The three polarizations were combined using a
Polarimetric whitening Filter (PWF). The PWF uses a polarimetric method to reduce large
amount of speckle in the image that is cause by the coherent nature of the imaging process
while maintaining resolution of the image [29] .

The PWF process begins with the mathematical modeling of the polarimetric radar return
from clutter. The polarimetric radar measurement vector can be represented as

Y =

 HH
HV
V V

 =

 HHi + jHHq
HVi + jHVq
V Vi + jV Vq

 (2.255)

where for example HHi and HHq are the in-phase and quadrature components of the
received complex HH signal. The return model assumes a non-Gaussian product clutter
model [29] . The assumption implies Y is the product of a complex Gaussian vector X that
represents the speckle and a spatially varying texture variable g, which gives

Y =
√
g ·X. (2.256)

The probability density function of the x is given by

f(X) =
1

π3|Σ| exp
�−X†Σ−1X

�
(2.257)

whereΣ is the polarization covariance matrix andX has zero mean. The covariance matrices
used in the development were defined as

Σ = σHH

 1 0 ρ
√
γ

0 ε 0
ρ∗
√
γ 0 γ

 (2.258)

where

σHH = E
�|HH|2� and ε =

E
�|HV |2�

E {|HH|2}

γ =
E
�|V V |2�

E {|HH|2} and ρ =
E {HH · V V }s

E {|HH|2} ·E {|V V |2} .

The product multiplier g used in the development of the PWF is modeled as a gamma
distributed random variable. Although the authors mentioned the possibility of using log
normal or Weibul distributions, the use of the Weibul distribution would have probably
bettered the results. The probability density function (pdf) of the product multiplier with a
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gamma distribution is given by

fG(g) =
1

ḡ

�
g

ḡ

�ν−1
1

Γ(ν)
exp

�−g
ḡ

�
(2.259)

where ḡ · ν = E {g} and ḡ2 · ν(ν + 1) = E �g2�. The gamma distribution assumption
causes the pdf of the return vector to become a modified Bessel function or more specifically
a K–distribution function that represented by

f(Y ) =
2

π3ḡνΓ(ν)|Σ| ·
K3−ν

�
2
t

Y †Σ−1Y
ḡ

�
(ḡY †Σ−1Y )

(3−ν)
2

. (2.260)

Now that Y has been developed, the return vector must be processed to get maximum pixel
intensity while minimizing speckle. The speckle can be measured as the ratio of the standard
deviation of the image pixel intensities to the mean of the intensities, that is

s

m
=

st. dev. of y
mean of y

(2.261)

where y is a random variable represents pixel intensity. So we need to find a process (A) that
can construct the best image possible from the three polarized images collected. In other
words we want to construct the image from the quadratic

y = Y †AY = gX†AX (2.262)

where A is a weighting matrix assumed to be Hermitian symmetric and positive definite.
The determination of A involves the minimization of s

m for a given mean value of the pixel
intensity. The solution to this is based on the following derived relations

E
�
X†AX

�
= tr (Σ ·A) =

3[
i=1

λi (2.263)

V ar
�
X†AX

�
= tr (Σ ·A)2 =

3[
i=1

λ2i (2.264)

where E {·} is the expectant value, V ar {·} is the variance and λi, i = 1, 2, 3. are the
eigenvalues of the matrix Σ ·A. Combining equations (2.261), (2.262), (2.263), and (2.264)
gives � s

m

�2
=
V ar {y}
E2 {y} =

ν + 1

ν
·
S3
i=1 λ

2
i�S3

i=1 λi
�2 + 1

ν
. (2.265)
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Since ν is constant, we can minimize the ratio by minimizing the termS3
i=1 λ

2
i�S3

i=1 λi

�2 . (2.266)

Now if we assume eigenvalues λT = [λ1,λ2,λ3] is a minimized solution, then so is
αλT which means we can achieve minimization by minimizing the numerator with the
constraint that the denominator is equal to one. The numerator can now be minimized using
a Largrange multiplier β, that is, to minimize the following function of λ:

f (λ) =
3[
i=1

λ2i + β

1−# 3[
i=1

λi

$2 . (2.267)

The minimization can be accomplished by taking the partial derivative of f (λ) with respect
to λi and setting them equal to zero

∂f (λ)

∂λi
= 2λi − 2β

3[
i=1

λi = 0, for i = 1, 2, 3. (2.268)

The minimizing solutions are

λi = β ·
3[
i=1

λi, for i = 1, 2, 3. (2.269)

that implies λ1 = λ2 = λ3. This means the weighting matrix A∗ should be chosen such that
the eigenvalues of matrix Σ ·A are equal which implies the minimizing solution is

A∗ = Σ−1. (2.270)

The whitening process can now be represented as

W = Σ
− 1
2 Y =

√
gΣ
− 1
2X (2.271)

where W has elements which are independent complex random variables and their
covariance matrix is an identity matrix. The single image is formed and the optimal solution
is obtained by simply noncoherently summing the powers of W . The entire process can be
thought as converting the received data (HH, HV , V V ) to the new basis given by

WT =

%
HH

HV√
ε

V V − ρ∗
√
γHHs

γ(1− |ρ|2)

&
(2.272)

and then summing up the three new components in the new basis to form the image

y =W2(1) +W 2(2) +W 2(3). (2.273)
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Lincoln Laboratory used PWF in testing their algorithm with different polarizations [30]
. The data consisted of two vehicles (Howitzer and a Tank) and clutter data consisting of
no targets imaged with HH polarization and using multiple polarizations combined into a
single image with PWF. The PWF data resulted in a slight increase in tank identification and
decrease in tank mis–identification.. The PWF data showed a large increase in the correct
identification of the Howitzer while decreasing the mis–identified Howitzers. The most
stunning effect was the 90% decrease in clutter being misidentified as targets. Although only
two targets were used, the results were very interesting. The technique should provide an
increase in all SAR ATR algorithms, which use the SAR image or features derived from the
SAR image identification.

A new and developing area of research into polarization and ATR is the exploration
in choosing the best transmit and receive polarization states for each target to improve
identification [40] . The use of different polarizations states for each target class can provide
maximum separate on target classes and maximize the performance of ATR algorithm.

The mathematical model describing the polarizations is first developed [40] . An arbitrary
electromagnetic wave can be completely characterized by specifying its wavelength, phase,
amplitude and polarization. We will assume the electric and magnetic components of the
wave are perpendicular to direction of propagation, and the tip of the electric field vector E
will trace out an ellipse in a plane whose geometrical properties are given by ellipticity X
whose value is equal to the angle between the major axis and a line joining the points on the
ellipse of the major and minor axis, and the ellipse orientation angle Ψ whose value is equal
to the angle between the major axis and the horizontal axis. The polarization of an EM wave
can also be represented using stokes vector

F =


I0
Q
U
V

 =


I0

I0 cos(2Ψ) cos(2X )
I0 sin(2Ψ) cos(2X )

I0 sin(2X )

 (2.274)

where I0 is the intensity of the wave. The values Q, V, U are called stoke parameters and are
related by

I20 = Q
2 + V 2 + U2. (2.275)

The response of a target from an incident radar wave can be represented by the polarimetric
scattering matrix �

Esh
Esv

�
=

�
Shh Shv
Svh Svv

��
Eih
Eiv

�
(2.276)

where Es and Ei are the scattering and incident waves respectively. S matrix is the
scattering coefficients for a given orientation of transmitting and receiving. The knowledge
of the scattering matrix allows the calculation of the response of the target to any incident
polarization wave. Instead of limiting ourselves to only horizontal and vertical polarization,
we can use the technique of polarization synthesis to model the response of the target to
signals with polarization specified by X and Ψ. This can be done by the use of a Mueller
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Matrix

M = RWR−1 (2.277)

whereW is a complex matrix

W =


S∗vvSvv S∗vhSvh S∗vhSvv S∗vvSvh
S∗hvShv S∗hhShh S∗hhShv S∗hvShh
S∗hvSvv S∗hhSvh S∗hhSvv S∗hvSvh
S∗vvShv S∗vhShh S∗vhShv S∗vvShh

 . (2.278)

In which, Str are the complex scattering coefficients defined in (2.276), t denotes transmit
orientation and r denotes the received orientation. And the complex matrix

R =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 −j j

 . (2.279)

With the Mueller matrix, the radar cross section (RCS) for any scatter at any polarization can
be expressed as

Σrt = 4πFrπFt. (2.280)

Using the above equations, it should be possible to pick the polarization that will produce
the largest separation between two given test objects. The problem can be stated as seeking
the feature vector x which maximizes the distance J(f) between elements of c classes. The
distance is defined as

J(f) =
1

2

c[
i=1

Pi

c[
j=1

Pj
1

ninj

ni[
k=1

nj[
l=1

δ(fik, fjl) (2.281)

where δ(fik, fjl) is the distance between two feature vectors fik and fjl from classes
wi and wj respectively. ni and nj are the numbers of training patterns in classes wi and
wj respectively. Pi and Pj are their corresponding prior class probabilities which can be
estimated by the frequency of occurrence

Pi ≈ ni
n
. (2.282)

The general approach is to find a polarization which will maximize the distance between
the targets of separate classes and at the same time minimize the distance for the targets
within class. For a target class model in polarization orientation angles (X ,Ψ), the angles
can change from 0 to 2π. For reducing the computational burden, 8 levels of quantization
for each angle are used. Therefore, there are 64 samples in each target class model for all the
polarization orientations. For each target class with n samples, the total number of distances
needed to be computed is n(n−1)

2 . For c number of classes, the number is quickly leads
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to a vary high computational burden: c·n(c·n−1)
2 distance calculations and searching the

minimum and maximum results.
The works in [29] , [30] , and [40] show the applications of using polarization to enhance

the appearance of SAR image and to classify/recognizing target. There are couple more
works using polarization in detecting target [59] and [41] . In conclusion, RCS’s of scatters
at different transmit and received polarization orientations show great variations depending
on the geometric shape of targets. It should have great impact on the performance of image
based ATR algorithms. However, the research in this area is very limited.

2.2.3 Squint

Compared with SAR in broadside mode, SAR in squint modes produces variations in phase,
range migration, Doppler centroid, and azimuth bandwidth. Those variations must be taken
care of in the imaging formation algorithms for best performance. The changes in squint
angle will certainly produce variations in SAR images and in the performance of ATR.
There are many variations, that some of the basic ones have been explained in the brief
section, in squint mode SAR imaging processing algorithms. However, there are no prior
work to address the change of image quality or ATR performance due to the squint angle
variation. We did come across several interesting papers. The work in [9] has compared a
number of squint image algorithms under the narrow–bandwidth and narrow–beamwidth
assumptions. Their results show that at a larger squint angle, their more efficient real–time
SAR imaging algorithms only produce a slight degradation (in azimuth resolution) compared
with conventional stripmap SAR at a large squint angle. Sun etc. [48] developed a new
approach to process high squint SAR imagery referred to as time varying step transform
(TVST) algorithm. Compared with conventional squint angle imaging algorithm, the TVST
algorithm produces SAR images with higher azimuth resolution at the large squint angles of
30◦, 40◦, 60◦. It also ensures the SAR image has uniform resolution and uniform distribution
in azimuth independent of the chirp rate variation of the radar signal. The good performance
of TVST algorithm comes with a price of slightly increased computational load. Another
related work [12] proposed a new conical geometric reference system to solve the data focus
problem when there are slight instability in squint angle (< 5◦) during data acquisition.

The work developed by Hanle [16] address the mathematically model of the affects of
squint angle on the polarimetric response of targets. The collection of data in squint mode
causes variation in the polarimetric response of targets, which need to be taken into account
for maximum SAR ATR performance. An Antenna manufactured to transmit and receive
vertical and horizontal polarized waves at broadside will produce polarized wave that vary
differently and are in some cases non-orthogonal at off broadside directions. Let the matrix
M represent the measured matrix of a target off broadside and more specifically

M = Ar · Z ·At (2.283)

where Z is the target polarization response at broadside, Ar is the antenna transformation
matrix modeling receiving, and At is the antenna transformation matrix modeling
transmitting. Now if we assume the use of a monostatic radar and that the transmit and
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receive orientations are the same, the following simplification can be made A = Ar = At.
For the development of the rest of the mathematical equations, we note that the matrix A can
be represented by a directional projection matrix F , a gain factor d2, and a supplemental
matrix. The supplemental matrix is a function of the squint angle β, azimuth angle
(divergence angle) α, depression angle γ, and elevation angle ε. The variables can be shown
to have the following relations:

sinβ = sinα cos ε and γ = −ε. (2.284)

The gain factor is defined by

d2 = cos θ = cosα cos ε cos δ + sin ε sin δ (2.285)

where θ is the off broadside angle and δ is the angle between the antenna horizon to the
broadside. The polarimetric matrix of the return from broadside using a uniformly emitting
planar array with well-matched elements can be represented by

F =

�
ah bv
−bh av

�
=

�
av bv
−bv av

��
ad 0
−bd 1

�
(2.286)

where

bh =
1t

1 + o−2h
and bv =

1s
1 + o−2v

ah =
t
1− b2h and av =

s
1− b2v

with oh = tanα sin ε and ov = tanα sin δ. The projection matrix can incorporate squint
angle effects through the introduction of the rotation matrix in (2.286)�

ad 0
−bd 1

�
where ad = ahav + bhbv and bd = bhav − ahbv. Now we can recover the target matrix Z
from the measurement M by the polarization matrix A which is formed by the projection
matrix F and a few other parameters.

Mc = A
−TMA−1 ≈ Z (2.287)

2.2.4 Depression Angle

Depression angle is the sensor parameter that determines how the electromagnetic scattering
from the three–dimensional object will project to the two–dimensional SAR image plane.
The variation of depression angle has dramatic effects on the appearance of real targets in the
SAR image. The depression angle is defined as the angle between the radar and the image
plane. Since in most of SAR imaging algorithms the signal processing is performed on a slant
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plane, the depression angle is assumed to be fixed at a given angle. Variation of depression
angle is probably the most widely studied of all of the sensor parameters. Some image based
SAR ATR algorithm published has performance evaluation run on the data collected from
different depression angle. All of the ATR algorithms showed significant degradations in
performance when depression angle was changed. However, due to the limited availability
of data on different depression angles. For example, the MSATR database only have data
sets with two different depression angles. There are no systematic study of depression angle
variations to quantify the level of degradation in ATR performance.

2.2.5 Motion Compensation

In order to form high-resolution SAR images, the radar system must correctly integrate the
coherent radar returns at each synthetic aperture position. The success of this process relies
on compensating the system to account for all possible cases of phase variation except those
caused by the imaged scene. Phase error can be introduced through the movement of the
sensor on the collection platform by more than a wavelength from the ideal trajectory or
from the change in propagation effects of turbulence in the troposphere or ionosphere [10] .
Although a number of motion compensation algorithms have been introduced, all of them
deal with either keeping better track the position of the sensor or using the collected data
itself to estimate phase error [54] . Sensor platform motion compensation algorithm is also
referred to as auto focus algorithm. A more detailed discussion of trajectory deviations in
sensor platform can be found in [11] .

The Phase Gradient Auto focus (PGA) is currently one of the most widely used motion
compensation scheme that uses the data collected to estimate the phase error [54] . The
PGA algorithm offers near diffraction–limited restoration, independence of phase error
order, immune to high background clutter, and without the need of bright isolated point like
reflectors. The PGA algorithm relays the redundancy of the phase error information in the
image to generate an estimate of the phase error.

The PGA technique can be divided into four main steps: 1) circular shift; 2) windowing;
3) phase gradient estimation; 4) iterative correction. The PGA algorithm begins with the
complex phase degraded SAR image and the phase degradation is independent of the scene
content and the image formation process. In fact the only assumption made is that the phase
is coherent over the entire image scene. The range compressed phase history domain data
can be expressed as

Fn(u) = |Fn(u)| exp [jφn(u) + jφε(u)] (2.288)

where n is the nth range bin, u is the position of the synthetic aperture (cross–range), |Fn(u)|
is the magnitude, φn(u) is the phase and φε(u) is the uncompensated phase error. It is shown
that the uncompensated phase error is only a function of aperture position independent of
range. It means the uncompensated phase error is common to all range bins and independent
of n. Now we can use azimuth compression so that each line of image data is a sum given by

Fu→ku {Fn(u)} =
[
m

h(ku) ∗ am,nS(ku − kum,n) (2.289)
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where h(ku) = Fu→ku{exp [jφε(u)]} is the Fourier Transform of the phase error function,
∗ denotes convolution and am,nS(ku − kum,n) is the impulse response of the imaged scene.

The first step of the PGA algorithm is to select the strongest scatter an in each range bin
and shift it to the origin of the Doppler domain ku. The shifting operation is carried out
using a circular buffer where samples shifted off one edge of the range bin is replaced on the
opposite edge of the range bin. The process has the effect of removing the frequency offset
due to the target kun. The process has the added benefits of improving the signal to noise
ratio, aligning regions with subtle contrast changes, and improving the phase estimation of
high clutter scenes.

The second step of the PGA algorithm involves windowing the circularly shifted data.
The windowing process maintains the degraded point spread function of the dominate scatter
in each range bin while removing data unnecessary to phase estimation. The size of the
window used to process the information is an important parameter of the algorithm. Auto
window sizing makes use of the fact that scatter in each range bin undergoes the identical
blurring which means an estimate of the blur can be obtained by averaging the blur over all
range bins using

s(ku) =
[
n

|fn(ku)|2 (2.290)

where fn(ku) is the circular shifted image data at nth range bin. The function s(ku) will be
maximum at ku = 0 (due to the circular shift) and plateau approximatelyW in the width of
the window. The exact width of the window can be chosen by using automatic amplitude
threshold over function s(ku) with some added safety factor, say plus 50% in width. Since
the change of amplitude shape of function s(ku) reflects the convergence of the iterative
focusing correction process, the auto window sizing threshold can be used to evaluation of
the speed of convergence of the algorithm.

The third step of the PGA algorithm involves phase gradient estimation. Let gn(ku) be
the shifted and windowed image data. The Fourier transform of gn(ku) is

Gn(u) = Fku→u {gn(ku)} = |Gn(u)| exp [jθn(u) + jφε(u)] (2.291)

where θn(ku) is the scatter dependent phase function for each bin. Now an estimate of the
phase error can be generated using the fact that for an arbitrary complex valued function

x(u) = |x (u) | exp [jψ(u)] , (2.292)

the derivative of the function is equal to

dx(u)

du
=
Im{x∗(u)ẋ(u)}

|x (u) |2 . (2.293)

Therefore, the weighted least squares estimate of the gradient of the phase error function is

φ̇(u) =

S
n Im{G∗n(u)Ġn(u)}S

n |Gn(u)|2
(2.294)
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= φ̇ε(u) +

S
n |Gn(u)|2θ̇n(u)S

n |Gn(u)|2

The estimated phase error φ(u) can be obtained by the integral of the estimated gradient
function φ̇(u). The phase error can be removed by simple multiplication of the phase error
by exp [−jφε(u)].

The fourth step is simply continuing the phase estimation and correction process until a
suitable compensation has been reached. Although the PGA technique is computationally
intensive, PGA provides the best overall results.

The PGA algorithm has recently been extended to correct two–dimensional (2–D) phase
error [55] . In most cases, 2–D phase error can not be completely corrected by autofocusing
algorithms which corrects the phase error in one–dimension (1–D) separately. The PGA
algorithm however, can be extended to 2–D to deal with 2–D phase error. The 2–D PGA
maintains all of the same advantages as the 1–D case while becoming more robust to the
type of error the algorithm can handle.

Phase Retrieval is a second motion compensation method that works directly with the
raw data [19] . Phase Retrieval has been designed to deal with 2–D motion error instead
motion instability being dependent only on azimuth co-ordinate (1-D) and high frequency
error instead of simply low frequency error modeled such as a polynomial. PGA does not
generally deal with either error well.

‘‘AutoClean’’ (Autofocus via Clean) [1] is another newly developed motion compensation
algorithm which is mainly for inverse SAR (ISAR) autofocus. The authors claim it performs
similarly as PGA algorithm. However, it is slightly better than PGA algorithm for ISAR data
where the range migration correction is not available.

Another area of motion compensation is for UWB FOPEN stripmap SAR [8] . The
paper surveyed motion compensation algorithms for widebeam SAR data and developed a
improved version of motion compensation algorithm for UWB stripmap SAR. The algorithm
aimed to deal with the required variations in motion compensation as the function of azimuth
beam angle (divergence angle) which is very wide for UWB FOPEN stripmap SAR.

2.2.6 Noise

The noise content of the images used for training and testing has large effects on the
performance of SAR ATR algorithms. There are multiple causes of noise in a SAR image and
all sources of noise can never be eliminated. Noise in a SAR image must be accounted for in
order to maximize the performance of any ATR algorithm. The best way to understand the
effects of noise on SAR ATR algorithms is to develop the mathematical model representing
noise in the SAR image. We found one prior work [22] that investigated the influence of
noise to the performance of a template–based SAR ATR algorithm.

The noise present in a SAR image has been shown to be multiplicative in nature. The
SAR image can be thought as being a combination of radiation reflected energy St.θ from
the desired target type t at a certain azimuth pose angle θ and noise w which is a zero–mean
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Gaussian independent identically distributed random variable

I(m,n) = St.θ(m,n) +w(m,n). (2.295)

Although there have been multiple distributions proposed for w(m,n), the mean is always
approximately proportional to standard deviation, that isu

E
q
[I(m,n)−E {I(m,n)}]2

r
= C ·E {I(m,n)} = C · St.θ(m,n) (2.296)

where C =
s
E {w2}− 1 which depends on the shape of the distribution chosen. The

noise in SAR images has been shown to best fit a Weibull distribution that is approximately
Rayleigh. A Rayleigh distribution arises from diffuse scattering, which comes about from
a large number of similar strength isotropic reflectors. The noise calculated from pixels in
the target area has been shown to fit a Weibull distribution too, but it also fit a log–nominal
distribution. The ability to use two different approximations in the target region is due to the
nonisotropic scattering mechanism, which are caused by aspect angle variation, or in other
words, caused by unstable pixels in the target. The ability to use two different models for the
noise distribution over target pixels explains why different statistical based approaches to
SAR ATR yield approximately the same results.

The mathematical models for the noise can be written as

P {I(m,n)} = c

b(m,n)

�
I(m,n)

b(m,n)

�c−1
exp

�
I(m,n)

b(m,n)

�c
u (I(m,n)) (2.297)

using the Weibull probability distribution function where u is the unit step function, c is the
shape parameter, and b(m,n) is a scale parameter chosen so that the image has a unity mean.
The Weibull probability distribution becomes a Rayleigh distribution when c is set to 2. The
log–normal PDF is given by

P {I(m,n)} = 1√
2π · σI(m,n) exp

� −1
2σ2

ln2
�
I(m,n)

ν(m,n)

��
u (I(m,n)) (2.298)

where σ is a shape parameter and ν(m,n) is scale parameter that is equal to the template
St.θ(m,n).

The knowledge of the mathematical model representing the noise in an image can be
used to better the performance of SAR ATR algorithms. The advantage of modeling the
multiplicative noise using a log–nominal distribution is that when the image is converted
to the log–magnitude domain the noise becomes additive and Gaussian. For the noise in a
Rayleigh distribution, the optimum technique is to apply a quarter power transformation
on the image, which causes the noise to become approximately Gaussian but remain
multiplicative.

2.2.7 Multi–look/Single look

Many platforms use radar antennas which poses very large beamwidth in the azimuth
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direction. The large beamwidth allow targets to be illuminated in the collection cycle for
a much longer period of time than is needed to obtain a desired azimuth resolution [46] .
Although wider integration angles would increase resolution, the implementation of phase
correction or focusing requires the storage of the phase histories of each range bin equal to
the length of the synthetic aperture. Modern SAR systems often are limited by the amount
of data that can be stored during a given collection cycle. The potential long collection times
also allow the formation of several images using smaller sub–apertures of the same scene
with a very small change in antenna look angle. In order to compress data collected and
reduce speckle, several of the images at different ‘‘looks’’ are combined to form one image
[25] . The process of combining the several looks to form one image can be done through a
weighting matrix or a weighting vector.

The variation of the target signature using single and multiple looks seem to be absent
in the literature. The consensus seems to be that multiple looks provide speckle reduction
and more stable target scattering behavior than the one from single look with no real data or
experiment to back up the conclusion. One of the few articles dealing with multiple look
data and target and clutter behavior used multi–look fully polarimetric data [26] . The article
focused on effects of various algorithms that combined the multi–look data into a single
image on clutters and targets.

The first process to form multi-look data using a weighting matrix is called the
multi-look polarimetric whitening filter (MPWF) in [25] . Consider the following
multi–look polarimetric covariance matrix from the fully polarimetric radar measurements
Y = [HH HV V V ]

T

ΣY =
1

N

N[
j=1

YjY
3
j (2.299)

where Yj is the jth look of sample Y . The speckle model in the multi–look covariance
domain is ΣY = gΣX due to the fact that the speckle appearing as multiplicative noise
Y =

√
gX (2.256) whereX represents speckle. Since the polarimetric radar measurement

Y contains energy from target and clutter, we have

ΣY =

 Σc+t = Σc + Σt target–plus–clutter
Σc clutter class
Σt target class

(2.300)

where Σc and Σt are the covariance matrices of clutter class and target class respectively.
However, the covariance matrix of clutter class Σc can be calculated from known clutter

samples. Using the same process as before W = Σ
− 1
2

c Y (2.271) except the use of the
multi-look covariance matrix ΣY instead of the individual image sample Y , we can have

EW = Σ−1c ΣY = gΣ
−1
c ΣX . (2.301)

If the multi–look data from a clutter area, EW = Σ−1c ΣY = λ · I is whitened. If the data is
from a clutter–plus–target area, EW = Σ−1c ΣY = λ · I + Σ−1c Σt. This information can be
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used to classify targets and clutters by a detection threshold T

W =
1

N

N[
j=1

Y T∗j Σ
−1
c Yj = tr

�
Σ−1c ΣY

�
=

�
> T target
< T clutter

. (2.302)

W is a single image formed by the multi–look polarimetric data with clutter suppression..
The second process to form multi–look data using a weighting matrix is called the total

Power (Span) detector [26] . The total Power detector process simply replaces the weighting
matrix Σ−1c used in the MPWF with the matrix

As =

 1 0 0
0 2 0
0 0 1

 (2.303)

and the remainder of the process is the same as before.
Instead of using a weighting matrix to transform the multi-look covariance matrix ΣY

into a single image, methods have been developed using a weighting vector. The weighting
vector process can be represented by

W = eT∗ · ΣY · e =
�
> T target
< T clutter

(2.304)

and it can even be transformed to matrix representation

W = tr(ΣeΣY ) =

�
> T target
< T clutter

(2.305)

where Σe = e · eT∗ [26] . The process using weighting vectors to develop the combined
image from multi-look images is the polarization match detector which is represented by

W0 = e
T∗
0 ·ΣY · e0 (2.306)

where e0 is chosen by maximizing the equation

r =
eT∗0 ·Σt · e0
eT∗0 ·Σc · e0 (2.307)

The maximum value for r turns out to be equal the maximum eigenvalue of the matrix
Σ−1c Σt and e0 is the corresponding eigenvector. After find e0, Σe = e0 · eT∗0 can be used as
part of the weighting matrix to form the polarization match detector.

Another multi-look processing technique using weighting vectors is called the max and
min power detector [26] . The max and min power detector relies on the assumption that
the polarimetric covariance matrix is Hermitian and at least semi-definite positive. The
diagonalization of such a matrix will always yield non-negative eigenvalues and orthogonal
eigenvectors. The polarization synthesis theory states that the maximum and minimum
eigenvalues of the covariance matrix corresponds to the maximum and minimum receptions.
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The diagonalization of the polarimetric covariance matrix Σ (2.258) can be represented as

Σ = DT∗

 α1 0 0
0 α2 0
0 0 α3

D (2.308)

where α1, α2, and α3 correspond to the eigenvalues in the order of maximum to minimum
and D consists of the eigenvectors e1, e2, e3 of the matrix Σ. Now we can use

Σi = ei · eT∗i , i = 1, 2, 3

as stated before the max and min power detector.
The last multi-look processing algorithm is called even and odd bounce [26] . The

Algorithm begins by decomposing the polarimetric covariance matrix Σ (2.258) into three
components or more precisely:

Σ = λ1

√
η + ξ

2
√
η


4|ρ|2γ
(
√
η+ξ)2 0

2ρ
√
γ√

η+ξ

0 0 0
2ρ∗√γ√
η+ξ 0 1

 (2.309)

+λ2

√
η − ξ

2
√
η


4|ρ|2γ
(
√
η+ξ)2 0

2ρ
√
γ

ξ−√η
0 0 0

2ρ∗
√
γ√

η+ξ 0 1

+ λ3

 0 0 0
0 1 0
0 0 0


where ξ = γ − 1 and η = ξ2 + 4 |ρ|2 γ.

The radar return from a complex scene can now be modeled as the non-coherent sum of
the returns from three simple targets each having their own scattering matrix as represented
above. The first two terms represent orthogonal scattering mechanism to each other and
the third term represent diffuse scattering from randomly oriented scatters. The Scattering
mechanisms can be determined using Van Zyl’s approach which states if real part of ρ is
positive then the first matrix appears as odd bounce scattering object with the maximum
eigenvalue of this matrix representing the odd bounce power. The opposite is true (even
bounce instead of odd), if real part of ρ is negative.

It was presented in [26] that real SAR data was used to derive polarimetric covariance
matrix parameters of pure clutter as well as man made buildings. Then using these
parameters along with the derived equations for probability of detection and of false alarm,
the performance of each method was predicated. The methods of MPWF and the polarization
match detector gave the most promising results.

2.2.8 Radar Waveform

Although by far most SAR systems employ chirp signals which have variations in frequency
and bandwidth, we found a small amount of research into alternative radar waveforms. The
most interesting research in this area deals with random noise waveforms. In the university
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of Nebraska, there has been a development of a preliminary FOPEN Ultra-wideband SAR
using a random noise waveform [13] , [52] and [53] .

The SAR system uses a random noise signal source that produces zero mean wide sense
stationary Gaussian random process with variance σ2n. The signal can be represented by

Sn(t) = a(t) cos(ω0 + φ(t)) (2.310)

where a(t) is a Rayleigh density, φ(t) has a uniform density between [−π,π], and ω0 is the
center angular frequency [53] . The response of the transmit and receive antennas can be
represented by their impulse responses At(t) and Ar(t) respectively. The signal is then band
passed

Sb(t) = Bp(t) ∗ Sn(t) (2.311)

where Bp(t) is the impulse response of the band pass filter. And the transmitted signal
becomes

St(t) = At(t) ∗ Sb(t). (2.312)

If the impulse response of the target is modeled with h(t), then the received signal can be
represented by

Sr(t) = h(t) ∗Ar(t) ∗ St(t) (2.313)

= h(t) ∗Ar(t) ∗At(t) ∗ Sb(t).
The received signal is then passed through a correlation receiver which does a cross
correlation of the received signal with the delayed band pass limited version of the original
random signal Sb(t− τ) which yields

Rrt(τ) = Sr(t) ∗ S∗b (−t) =
] ∞
−∞

Sr(t)S
∗
b (τ + t)dt (2.314)

= h(t) ∗Ar(t) ∗At(t) ∗Rbb(τ)
= h(t) ∗ P (τ)

where P (τ) = Ar(t) ∗At(t) ∗Rbb(τ) is the point spread function of the system and

Rbb(τ) = Sb(t) ∗ S∗b (−t) =
] ∞
−∞

Sb(t)S
∗
b (τ + t)dt (2.315)

= Bp(t) ∗ Sn(t) ∗ S∗n(−t) ∗B∗p(−t)
= Bp(t) ∗Rnn(τ) ∗B∗p(−t)

is the autocorrelation function of the bandpassed random noise. Rnn(τ) is the autocorrelation
of the random noise signal before bandpass filtering. The random noise signal waveform
provides the advantages of being harder to detect than the chirp signal and harder for third
party to interfere and jamming. The system on the whole however is still very preliminary
with some significant obstacles still needed to be overcome before wide spread use.
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Chapter 3
SAR Parametric Variation Study:
Experiment Paradigm and Data Sources
In the literature review, we have discovered that there are many SAR sensor operation
conditions will affect the image appearance of targets. Due to the complexity and variations
in SAR image formation algorithms, each SAR parameter will have different levels of
influences on SAR image formation depending on the underline algorithm used. The
performance of the image based ATR algorithms will be affected by the variations of SAR
parameters. Due to the large number of radar sensor parameters and limited availability of
SAR image data across the dynamics of sensor parametric variations, we could not find any
systematic study on SAR sensor parameters and their influences on ATR performance. In
order to evaluate the performances of ATR algorithms under various sensor OC’s, we need
to develop a test and evaluation platform. The test and evaluation platform shall include
the basic components such as 1) a set of baseline ATR algorithms; 2) a collection of real or
synthetic SAR data under various sensor OC’s; 3) an evaluation and scoring system. In this
study, we have searched for real experiment data under different sensor OC’s. We have also
established the capability to generate synthetic radar data for both simple or complicated
target model under the prescribed sensor OC’s. We also identified and implemented a set of
baseline ATR algorithms for the SAR parametric study test and evaluation platform.

3.1 SAR Image Data Sources for Parametric Study

Due to the lack of research into the effects of sensor OC’s on SAR ATR in the present
literature, it seemed logical to carry out a preliminary experiment trying to quantify how the
variation of certain sensor characteristics affects different types of SAR ATR algorithms. The
experiment was designed to comply with the basic principles of evaluation of performance
of SAR ATR algorithms using extended operating conditions (EOC) [37] . In accordance
with EOC evaluation, the SAR imagery will be divided up into individual slots where each
slot would represent an individual point in the dimension of the OC. The evaluation of
ATR performance due to the variation of the OC’s would be done by training the algorithm
using one value for the OC and then testing using a data set of the same target imaged with
different values for the tested OC.

In order to evaluate SAR ATR with respect to sensor OC’s, the experiment first needed
SAR imagery, which varied over the sensor operating conditions to be evaluated. For the
experiment to be most useful, the SAR imagery should contain the same targets imaged at
different depression angles, frequency, polarization, and other parameters chosen for the
experiment. The SAR data should also ideally contain different vehicle versions than those
used in testing, and even contain confusers.

In this section, we will identify various sources of SAR image data suitable for parametric
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study. In general, SAR imagery data can be classified into two broad classes. The first is
SAR imagery obtained from real objects, and the second is SAR imagery obtained from
simulation. The real SAR imagery is much more desirable, but much more limited due to the
cost of collection and the ability to alter the sensor parameters. In this section, we will also
cover the methods for SAR data synthesis under various sensor OC’s.

3.1.1 Real SAR Image Data Sources

The most common source of real SAR imagery is MSTAR data. The complete MSTAR
database was obtained from three different collections done in September 95, November
96, and May 97 [37] . The public release MSTAR data is a subset of the September 95
collection. Sandia National Laboratory using a STARLOS sensor collected the MSTAR
data set at Huntsville, Alabama. The MSTAR data was obtained at X band (9.6 GHz),HH
polarization, and with a resolution of 1ft. by 1ft. The MSTAR data collected did vary over
depression angles. One of the public data sets consisted of targets, which were imaged at
depression angles of 15◦ and 17◦. Another data set consists of different targets that were
imaged at depression angles of 15◦ and 45◦. The narrow depression angle bandwidth in the
first set and the very large separation of depression angles in the second set does not allow
to establish a nice quantitative relation between depression angle variation and SAR ATR
performance.

SAR imagery has also been collected by the Lincoln Laboratory at MIT [30] . Lincoln
Laboratory collected SAR imagery with a Millimeter wave SAR sensor. The SAR data was
obtained at 33GHz, with a depression angle of 22.5◦, fully polarimetric ka-band, and with a
resolution of 1ft by 1ft. The data collected has images of multiple polarization of each target
including HH, HV , V V polarizations, but unfortunately the collection contains only two
different types of vehicles.

Another source of real SAR imagery is often referred to as the P–3 data [45] . The P-3
data was collected to understand the detection of stationary targets, which are obscured by
foliage using SAR [49] . The P-3 data was collected in 1995 by a Navy P-3 aircraft for
ERIOM and NAWC at Michigan, California, Maine, and North Carolina. The Navy P-3
radar collection was unique because it used a FOliage PENetrating SAR system. An FOPEN
SAR system consists of an ultra wideband (UWB) radar operating at UHF/VHF frequencies.
The P-3 radar used a chirp radar pulse with a frequency band of 215 to 730 MHz. The
collection involved 33 military vehicles imaged with depression angles of 45◦, 30◦, and
20◦ and obtained a resolution of .33 M. The targets were imaged in the open and in foliage
consisting of a mix of deciduous and coniferous trees. The SAR image was formed using
the omega-K (or Range migration) technique to coherently process wide-band and wide
integration angle raw data [49] .

A non-aerial source of SAR data has been collected by the Army Research lab using an
ultra wide band (UWB) boom SAR [17] . The SAR radar was connected to a boom of a truck
and the truck driven to take SAR measurement. The UWB boom SAR uses a radar pulse
with a bandwidth of 40MHz to 1GHz, HH polarization, with a PRF of 750 Hz. The first
collection using this radar was performed at the Aberdeen Proving grounds August of 1995.
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The collection involved imaging canonical and tactical targets deployed in a deciduous forest
of varying density. The second collection was performed at the Yuma Proving Grounds at the
steel Crater site. The second collection involved imaging mines, mine simulants, wires of
various gauges, pipes of various diameters, and 55 gallon drums to represent military targets,
along with other environmental and commercial interests.

3.1.2 Simulated SAR Imagery

The lack of any real data meeting all of these requirements has forced us to use simulated
data in the preliminary experiment. The most widely used general-purpose radar signature
prediction code is XPATCH [50] . XPATCH calculates high frequency electromagnetic
scattering from complex objects based on high frequency shooting and bouncing-ray
technique. XPATCH allows the generation of SAR imagery while specifying many of the
sensor characteristics of interest. The XPATCH code has been rigorously tested against
actual radar measurements.

A second general radar signature prediction code has been developed by Surface Optics
Corporation called RadBase [4] . RadBase is capable of generating accurate Radar Cross
section and Amplitude and Phase data of complex objects using a PC. RadBase predicts
radar signature using hybrid of geometrical/physical optics approach and includes advance
interactions such as blocking, multibounce interactions, edge diffraction, and accounts for
dielectric materials. The program has been fully validated XPATCH, but is very expensive.

After considering various options, we have set up a SAR ATR facility equipped with
XPATCH and complex target CAD models at Russ Engineering Center, Wright State
University. We are now capable of generating synthetic radar signals with various sensor
parameters and OC’s. The data set was produced using XPATCH and CAD models of
vehicles obtained from the U.S. government. The radar signature prediction tool XPATCH
was capable of producing images of the targets imaged using different radar frequency,
polarization, and depression angle.

3.2 Baseline SAR ATR Algorithms and Implementation

The next decision to make is the selection of the particular SAR ATR algorithm to use in
the experiment. The most logical choice of the SAR ATR algorithm to use would be what
is commonly referred to as the baseline SAR ATR in literatures. However to date, there is
no general agreement on what constitutes the baseline SAR ATR algorithms. In order to
help generalize the results we will obtain on the performance of SAR ATR with variation
of sensor OC’s, we chose to implement several of the more popular SAR ATR algorithms,
which represent the various approaches to tackle the ATR problems in our experiment. In the
following sections, we will introduce some of the SAR ATR algorithms that we considered,
selected and implemented.
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3.2.1 MSATR ATR

The MSTAR program, under DARPA and the Wright Laboratory, has developed a model
based vision (MBV) approach to SAR ATR [56] . The MBV ATR algorithm generates
hypotheses of the possible identity of the unknown SAR image and then matches the features
extracted from the unknown SAR image with features predicted from stored models. The
scores from each hypothesis is accumulated, and the hypothesis with the greatest evidence is
declared as the target [24] .

The MBV ATR algorithm posses several key advantages over other types of ATR
algorithms. The MBV AR approach uses an on-line signature prediction module, which
allows different sensor characteristics to be directly accounted into the generated signatures,
and the number of possible signatures generated is only limited by the properties of the
representation stored in the library. The MBV ATR algorithm uses a novel coarse to fine
hypotheses strategy to identify targets, which allows a large number of real targets to be
identified in a manner computationally traceable. The incremental approach allows the
correct identification of targets with incomplete and imperfect knowledge of operating
conditions.

3.2.1.1 Algorithm Description The MSTAR algorithm can be divided into two main
stages. The first stage performs image and hypothesis reduction, and the second stage
performs the hypotheses and testing of the SAR image chips.

The first stage can be subdivided into the Focus of Attention (FOA) and the indexing
subunits. The FOA unit receives as input all of the SAR imagery collected from the sensor.
The FOA unit scans the raw SAR imagery for areas with potential targets, and removes chips
called Regions of Interest (ROI) that contain those potential targets. The actual method used
to perform FOA processing remains to the best of our knowledge undocumented.

The ROI identified by the FOA module is passed to the indexing module. The indexing
module attempts to generate possible target hypotheses which reduce the number of possible
target types the MBV ATR algorithm must process to generate an identification. The
hypothesis of the potential target must include an estimate of target type, pose, articulation,
and even obscuring factors [24] . To perform indexing, the ROI is compared to a set of
stored models in a template method based approach. The stored models in order to be useful
in reducing the number of hypotheses must span the target space. The target space can be
thought as of having two dimensions. The first dimension is target type, and the second
dimension consists of all characteristics of the target except type including pose, articulation
and variants. The models used for indexing span the target space by each being formed as a
combination of target models [39] .

The second stage uses four sub modules to process the hypotheses generated by the
index module for the correct identification of the ROI chip. The identification is done an
iterative process using each hypothesis and ROI chip as input into the Predict, Extract,
Match, and Search (PEMS) loop [24] . The PEMS loop is the foundation of the coarse to
fine reasoning strategy.

The prediction function of the PEMS loop is performed by the MSTAR feature prediction
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module. (MPM). The MPM can generate SAR image features and actual SAR images in an
extremely flexible process that can take into account a great number of sensor and target
parameters. The MPM can roughly be divided into on-line and off-line components.

The off-line component of the MPM has the job of representing the CAD model of
each target in the form which allows easy, accurate, quick, and dynamic feature generation
of the target with as little stored information as possible. The feature generation from
the target must coincide with some type of uncertainty representation for each feature
for analysis. The off-line representation of the target begins by breaking the target into
the individual structures that cause specific features of the SAR image into dynamic and
static phenomenology components. Dynamic phenomenology components are created or
destroyed by configuration or articulation variation of the target. Static phenomenology
are signature elements that do not change. Once each component of the SAR signature is
identified, the phenomenology, which best characterizes each component of the SAR image
is chosen for each structure. The phenomenology types include a) reflector primitives which
are elementary primitives with closed form electromagnetic solutions; b) scattering centers
which represent the object using the geometric theory of diffraction estimation implying
the wavelength of the electromagnetic radiation of the radar wave is much smaller than the
dimensions of the object; c) finally special phenomenology primitives which encompasses
all other structures not represented by the first two or more specifically cavities. After the
representation of each structure has been determined, the systematic data structure (SDS) of
the target is determined. The SDS defines the spatial relationship between the primitives
determined. The SDS consists of four different node types. The first node type is a two-way
link between primitives such as between a windshield and the hood of a car. The second node
type is a joint between two continuously articulating primitives such as between the turret
and the body of a tank. The third node type is to link primitives that can move in a directed
manner such as a car door being open or closed. The last type of node links the primitives for
an alterative target configuration such as a T-72 tank with or without rear gas drums [24] .

The on-line component of the MPM has the job of generating the features of the
target specified by the search module. The on-line MPM component uses the hypothesis,
which includes target type, pose, configuration, and articulation to retrieve the correct
primitives from the stored data in the off-line component of the MPM. The hypothesis
of the configuration of the target is used by the SDS to assemble a 3-D representation of
the hypnotized target. Then using sensor information, the hypothesis, and the Z-buffering
algorithm, which determines how the phenomenology of the target is obstructed, features are
predicted to coincide with the hypothesis from the search module [24] .

The search module guides and generates the hypotheses used in the identification of
the ROI chip. The search module must be able to combine data acquired thought matches
against different possible hypotheses into one complete statistical distribution. The search
module uses the Bayesian score represented by a statistical likelihood generated from the
match module to developed better possible hypotheses for the ROI chip, and at the end of
the active search compute the posterior probability of each hypothesis given the accrual
evidence for target identification [56] .

The search module must maximize both the likelihood and posterior probabilities. The
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likelihood function determines the probability of extracting the observed features given the
hypothesis, and can be formulated as:

P (Y = y|H = h) (3.316)

where the capital letters denote random variables and lower case letters denote realization.
The random variable H: Scene Hypothesis-target type, pose, articulation, background
and Y : Vector of extracted features. The match module produces a single sample of this
likelihood function. The target type is chosen by calculating the conditional probability
of the possible target type given the extracted features. The posterior probabilities are
calculated by weighting the likelihood function with prior probabilities and integrating over
all hypothesis variables other than target type and can be represented as follows:

t = argmax
t
P (T = t|H = h) (3.317)

where T is target type [56] . The optimal solution would involve the complete calculation of
the likelihood function, which for SAR applications is almost impossible.

The calculation of the likelihood function involves feature prediction, extraction of
features from the SAR images and scoring which means simple brute force optimization
taking a large number of samples of the likelihood function impracticable. The approach
to optimization of the two probabilities is based on viewing the problem as a sequential
sampling problem. In a classic sequential sampling problem, measurements are taken
represented by

zk = P (Y |hk) (3.318)

with an associated cost ck for each measurement. The decision to take another sample and
what sample to take (hk) is based on the previous samples z1, · · · , zk−1, and the total cost of
measurement

Sk−1
i=1 ci, as well as the total cost of making the final decision. The difficulty

of this approach is the calculation of the cost function. The cost function assumes the
knowledge of the probability distribution of the likelihood function P (Y = y|H = h) and
more specifically the knowledge of at all P (Y = y|H = h) at all h 9= hk. The formation of
the optimization problem in the form of a quasi sequential sampling problem can be done by
assuming the likelihood function is well behaved and decomposition of the search algorithm
into two components. The first component will serve as an evidence accrual function that
will calculate the conditional probability given the first k measurements or in other words

πk(h) = Pr(H = h|z1, · · · , zk). (3.319)

The second function is a refinement function, which will use πk(h) as a guide to decide what
the next hypothesis should be and whether to keep generating hypotheses.

The hypothesis generated by the search module can be divided into two categories. The
first category of hypothesis is refinement hypothesis. Refinement hypothesis use the match
score to improve the estimate of target type, or in other words, it uses the rough estimate of
the target generated by the index module and gently refine the original guess more accurately.
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The second category of hypothesis is generation hypothesis, which generate a new guess of
what the target may be. Both types of hypothesis must be used in order to assure maximum
performance.

Refinement hypothesis assume the score produced by the match module will increase as
the hypothesis become closer to the ground truth. This assumption implies the likelihood
function is well behaved with well-defined local maxima and the original hypotheses is
close the correct maxima. The assumptions imposed on the likelihood function means that
physically the system is using features that provide a clear distinguishing between target
types, the index module consistently generates hypothesis near a local maximum, and the
index routinely generates hypothesis that are close to the correct pose.

The search module then must use the hypotheses and the scores generated from the
match module to determine the identity of the test image. The identification of the targets
is accomplished by calculating the posterior probabilities based on the evidence acquired
through the search. The posterior probabilities calculated are then passed through decision
rules to generate a final decision. The decision rules are in the form of declaring type of the
target as the type with the largest posterior probability that exceeds some threshold.

3.2.1.2 Implementation The MSTAR ATR algorithm was not implemented and hence
not used in the experiment. Although the MSTAR ATR algorithm is as close to a baseline
ATR algorithm that currently exits, the independent implementation of the algorithm would
be virtually impossible. The public articles describing the implementation of the algorithm
are too vague for any serious realization, and even without this barrier, the algorithm itself
is too complicated for individual implementation. The only choice left if the algorithm was
to be used, was to obtain a copy of the original code. The obtainment of a copy of the true
algorithm from the government proved to be unworkable.

3.2.2 Template Based ATR Algorithm – Baseline Algorithm 1

The template method for SAR ATR is the most straight forward and perhaps the most
reliable of all ATR algorithms [58] [37] . The process is little more than comparing known
radar signatures collected at test ranges or from simulation with unknown radar signatures
obtained from the field. The MSE is calculated between the received signal and all of the
templates and the closest match chosen. Therefore, it is also known as the mean–square error
(MSE) classifier.

3.2.2.1 Algorithm Description The template match algorithm has two parts: training
part is to generate a template for each class of target at a particular pose angle T(ci,θj) and
classification part is to calculate the distance (MSE) between an observation target chip to
all the templates and classify the target chip to a specific target class and pose angle (ci, θj).
The training of the algorithm consists of simply generating templates of every target for
an interval of azimuth angle. The template formation process consists of registering and
estimating the mean target signature over a small azimuth angle. The assumption is made
that over a small azimuth angle, the radar signature of the target remains constant. The
templates (N ×N dimension) are formed by averaging all of the training images in a given
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small range of azimuth angles (commonly 5◦ ∼ 10◦). Assuming there are Nij training
image chips within a prescribed window of azimuth angles for a target class ci at pose angle
θj , we can find the mean target signature using the running mean estimation as

Mk(x, y) =
(k − 1)Mk−1(x, y) + Sk(x− xopt, y − yopt)

k
(3.320)

for k = 1, 2, · · · , Nij where the optimal spatial translation (xopt, yopt) between the next
image chip Sk+1(x, y) and the current running mean estimation Mk(x, y) can be found
according to the following alignment process

(xopt, yopt) = arg min
xs,ys

+
N[
x=1

N[
y=1

|Mk(x, y)− Sk+1(x− xs, y − ys)|2
,
. (3.321)

The training process is iteratively progressed in between equations (3.321) and (3.320) with
an initial valueM1(x, y) = S1(x, y) which is the first image in the training image set. The
final trained template of class ci at pose angle θj can be reached as

T(ci,θj)(x, y) =Mk(x, y) when k = Nij . (3.322)

Classification is done by calculating the MSE between the unknown signal and all of
the templates T(ci,θj) in the database. The MSE classification is performed for all (ci, θj)
according to

(ci, θj) = argmin
i,j

+
N[
x=1

N[
y=1

|T(ci,θj)(x, y)− S(x− xopt, y − yopt)|2
,

(3.323)

where (xopt, yopt) are the optimal spatial translation indices for data alignment. The
minimization processes are realized by comparing the maximum cross correlation between
templates T(ci,θj) and image chip S(x− xopt, y − yopt) for all i and j. The data alignment is
realized by searching for the local maximum cross correlation function within a small spatial
window of translation indices (xopt, yopt). In the template matching algorithm, the amplitude
of SAR image chip is often quarter powered to make the target and the shadow areas more
visible while at the same time preventing the strongest scatter to dominate [21] .

3.2.2.2 Implementation The initial MATLAB code of the template matching algorithm
was obtained from Mike Bryant [5] that approximated the template ATR algorithm given in
the article [58] and [37] . The code was first verified and then changed to maximize the
performance of the code.

For the following discussion please referee to figure (1) which provides a flow chart
of MATLAB functions used in this algorithm. The MATLAB code for the template ATR
algorithm obtained from Mike Bryant consists of 17 separate functions that could be
subdivided into groups with four different purposes. The main groups of the program are 1).
data base generation, 2). template formation, 3). calculation of the mean squared error, and
4). performance evaluation.
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1.Template Matching ATR algorithm — Subroutine Flow Chart
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The algorithm starts with the main program or the MSE˙MAIN.m function. The
main program begins with the user specified signal array size, template size, azimuth and
depression uncertainty by way of variables. The template matching ATR implementation
assumes that the target pose angle can be estimated within a small window of uncertainty by
another means. It reduces number of templates to be tested because only the templates within
an azimuth window specified by the azimuth uncertainty value around the real azimuth
value is tested in the algorithm. Then structures are declared that allow the specification of
the training and testing data sets. The user is able to specify by way of serial number and
depression angle used for training and testing targets. Then the create_database function is
called.

The create_database function is the key function in the group 1) of the algorithm that
generates the database. The function begins with calling the function find_filenames.
The find_filenames function goes through the entire directory specified by the user to
develop a path directory to each of the files in the specified directory. A structure containing
the file names is passed back to create_database function. All of the files with names
specified by the new structure are then read into the new database. Then using the function
find_header_value for each file, the Phoenix header is searched for important characteristics
(such as target azimuth, size of target, etc.) and the values of each characteristics is copied
to fields of structure with the same name making up the database. This process allows the
new database to be more easily index. The last step in the creation of the database is a call to
the function create_index. This function goes through each field of the structure, calls the
unique_token function which finds all of the unique values of that field, and then creates
an index of each unique field. Therefore the program is able to access all targets with a
depression angle of 17◦ with a single presorted index. With the creation of the database the
next step is the formation of the templates.

The make_all_tmplts function is the key function in the group 2) of the algorithm
that forms the templates. The function goes through each azimuth and depression window
of each target and generates a template. The function begins by determining the values
of the azimuth and depression window for the present template. Then using the function
database_query finds the indices of all the training images in the database which satisfy
the given window intervals. The make_all_tmplts function then calls get_sig function,
which calls the read_sig function, which reads the magnitude image into the program. The
get_sig function quarter powers the image and then sends all of the images back to the
make_all_tmplts function in the form of a structure. Then the make_tmplt function is
called. This function removes each image off of the structure containing all of the images in
the training window aligns the image with the present template with the function sig_align
and then averages all of them together. The function sig_align aligns the template and the
image by calculating the covariance between the two, and then shifting. The covariance is
calculated using inverse Fourier transform on the template, and Fourier transform on the
image and then multiplying the two together.

The test_mse function is the key function in the group 3) of the algorithm that calculates
the mean squared error between the test image and the templates. The function begins by
using database_query to find the indices of the test images, along with the functions get_sig
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and read_sig to retrieve the test images from the database. The tested templates are aligned
with the signal using sig_align and then the difference between the image and template is
calculated and squared.

The performance of the algorithm is then calculated. The performance measures chosen
were the confusion matrix calculated by the score function, and the receiver operating curves
(ROC).

3.2.2.3 Verification The code was intended to be verified by performing two of
the baseline classifications performed in article [58] . The templates in the article were
constructed using three target types imaged at a depression angle of 17◦ and using azimuth
interval of 17◦. The targets used in the training set are given in (3.324). The first test was
performed simply by resubstituting the same targets used in the training set but imaged at
depression angle of 15◦. The second test involves different variants of the training vehicles
but also imaged at depression angle of 17◦.

Training/Test set 1

Model Vehicle Serial No. Depression angle
BMP–2 #1 9463 17◦/15◦

M–2 #1 17◦/15◦

T–72 #1 132 17◦/15◦
(3.324)

Test set 2
Model Vehicle Serial No. Depression angle

BMP–2 #2 9566 17◦

M–2 #3 17◦

T–72 #4 812 17◦
(3.325)

However, as of yet the data was not available to conduct the verification.

3.2.2.4 Optimization By varying the parameters of the template ATR algorithm and
charting the performance of the code using new sets of training and test data, we performed
the optimization of the algorithm. The same training and test data sets were used later on to
optimize all three of the SAR ATR algorithms implemented.

The new data set evaluated the performance of the algorithms over several extended
operating conditions. The training set consisted of two vehicle types (c21 and 132) both
imaged at a depression angle of 17◦ (3.326). The test set consisted of not only the same
two vehicles imaged at a different depression angle of 15◦, but also involved two different
versions of each of the training vehicles imaged at a depression angle of 15◦. The test data
set also contained a vehicle (c71) that was of a different class than the vehicles trained as a
confuser object (3.327).

Train set for algorithm optimization
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Model Vehicle Serial No. Depression angle No. of Images
BMP–2 #1 c21 17◦ 233
T–72 #1 132 17◦ 232

(3.326)

Test set for algorithm optimization

Model Vehicle Serial No. Depression angle No. of Images
BMP–2 #1 c21 15◦ 196

#2 9563 15◦ 195
#3 9566 15◦ 196

T–72 #1 132 15◦ 196
#2 812 15◦ 195
#3 s7 15◦ 191

BTR–70 #1 c71 15◦ 196

(3.327)

The first decision to be made regarding the performance of the algorithm was whether to
shift or not shift the test image over the template. In the first run, the algorithm was tested
without any kind of shifting to help correct for any centroid errors between the images.

Results without alignment

Template (80–by–80) BMP–2 T–72 Unknown
BMP–2#1(196) 194 0 2
BMP–2#2(195) 179 3 13
BMP–2#3(196) 178 3 15
T–72#1(196) 1 193 2
T–72#2(195) 30 113 52
T–72#3(191) 41 118 32
BTR–70(196) 136 22 38

(3.328)

Then a second run was performed using the sig_align function, which allowed the test image
to be shifted over the template.

Results with alignment

Template (80–by–80) BMP–2 T–72 Unknown
BMP–2#1(196) 188 1 17
BMP–2#2(195) 170 10 15
BMP–2#3(196) 176 10 10
T–72#1(196) 0 194 2
T–72#2(195) 8 138 49
T–72#3(191) 9 149 33
BTR–70(196) 108 9 79

(3.329)
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Comparing the results obtained shows that shifting (3.329) gave slightly diminished results
when it came to identifying the BMP-2 vehicles but greatly increased the number of T-72
vehicles correctly identified. The large increase in performance of T-72 identification more
than set off the slight decrease in performance of BMP-2 identification. The alignment of
test images was adopted for all other tests.

The second measure taken to improve the performance of the template ATR algorithm
was the removal of the mean of all images before template formation or testing. The
algorithm was trained and tested with zero mean images and the results were recorded.

Results with alignment and mean removed

Template (80–by–80) BMP–2 T–72 Unknown
BMP–2#1(196) 193 0 3
BMP–2#2(195) 178 0 17
BMP–2#3(196) 185 0 11
T–72#1(196) 0 193 3
T–72#2(195) 0 130 65
T–72#3(191) 0 174 17
BTR–70(196) 122 2 72

(3.330)

The zero mean images gave a very large increase in the performance of the algorithm. The
algorithm failed to mis–identify any of the BMP-2 or T-72 vehicles. The zeroing the mean
of all images was adopted for all other tests.

The last property that was varied in the algorithm was the size of the template. The size
of the template determined how much of the original image would be used in identification.
The first test run was done using a template size of 90X90.

Results with alignment and mean removed

Template (90–by–90) BMP–2 T–72 Unknown
BMP–2#1(196) 192 0 4
BMP–2#2(195) 175 0 20
BMP–2#3(196) 184 0 12
T–72#1(196) 0 194 2
T–72#2(195) 1 132 63
T–72#3(191) 0 176 15
BTR–70(196) 121 1 74

(3.331)

The bigger template allowed slightly more of the T-72’s to be properly identified, but slightly
less of the BMP-2’s were properly identified. The increase in size was inconsequential. The
template size of 100X100 gave even worse results. A last run of was performed with a
template size of 64X64.

Results with alignment and mean removed
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Template (64–by–64) BMP–2 T–72 Unknown
BMP–2#1(196) 188 1 7
BMP–2#2(195) 170 10 15
BMP–2#3(196) 176 10 10
T–72#1(196) 0 194 2
T–72#2(195) 8 138 49
T–72#3(191) 9 149 33
BTR–70(196) 108 9 79

(3.332)

The results were clearly worse than the bigger template, and the template size of 80X80 was
chosen as the best for the data set.

Though out the performance evaluation, the confuser was mis–identified at an alarming
rate. The confuser vehicle in hindsight should be extremely hard to separate because of its
similarity to the training vehicles. Therefore making it a very useful confuser.

3.2.3 Lincoln Laboratory ATR System – Baseline Algorithm 2

The Lincoln Laboratory ATR system [30] consists of three separate stages with each
designed to perform a specific task. The three stages are 1). detector, 2). discriminator, and
3). classifier.

3.2.3.1 Algorithm description The detector receives the raw SAR data and extracts
potential regions of interest (ROI). The detector identifies candidate pixels of ROI based on
its local brightness. This is done using a two-parameter CFAR detector defined as

Xt − µc
σc

> KCFAR (3.333)

whereXt is the amplitude of the pixel being tested, µc and σc are respectively the mean and
standard deviation of the clutter inside of the boundary stencil, and KCFAR is the threshold
to control the false alarm rate. The boundary stencil is simply a user defined area chosen
around each test pixel.

The discriminator stage process each ROI produced from the detector and rejects any
ROI that does not contain man made objects. The discriminator stage can itself be broken
into three parts. The first component uses a rectangular target size template to slide over
the ROI in order to determine the location and orientation of the object by maximizing the
energy inside the template. The second part of the discriminator computes the discrimination
features of the ROI and the last component of the discriminator combines these features
into a discrimination statistic that indicates how ‘‘target-like’’ the ROI is. The discriminator
stage uses 12 discrimination features that can be divide into four groups. The four groups
are textural features, size features, contrast features and finally polarimetric features. The
textural features include a). the standard deviation which measures the fluctuation in
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intensity of the image, b). a fractal dimension which is defined by

dim =
logM1 − logM2

log 2

where M1 is equal to the number of 1 by 1 pixel boxes need to cover the target andM2 is
equal to the number of 2 by 2 pixel boxes needed to cover the target, and c). the weighted
fill feature which measures the total energy contained in the brightest 5% of pixels in the
ROI. The size features include a) the mass which is simply the number of pixels in the target,
b). the diameter which is defined as the length of the diagonal of the smallest rectangle that
encloses the target, and c). the normalized rotational inertia which is defined as ‘‘the second
mechanical moment of the blob around its center of mass, normalized by the inertia of an
equal mass square.’’ The contrast features consist of a). the peak CFAR, which is simply the
maximum value of the target in the CFAR image, b). the mean CFAR, which is the mean
of the values of the target in the CFAR image, and c). the percent bright CFAR, which is
the percentage of pixels in the target of the CFAR image greater than chosen empirically
threshold. The polarimetric include a) the percent pure (odd or even) which is the percentage
of pixels in the target which fall in either the even bounce or odd bounce channel, percent
pure even which is percentage of pixels in the target which fall in the even bounce channel,
and b) the percent bright even which is the percentage of pixels in the target which exceed
the threshold in the CFAR image, and even bounce. The even and odd bounce images are
calculated using the formulas

Eodd =
|HH + V V |2

2
and Eeven =

|HH − V V |2
2

+ 2|HV |3. (3.334)

The best discrimination features for a given system (Resolution, Polarization, etc.) are
combined into a single discrimination statistic defined by the distance metric

d(X) =
1

n
(X −M)TΣ−1(X −M) (3.335)

where n is the number of features used, M and Σ are estimates of the mean vector and
covariance matrix of the features used obtained from the training data, and X is features
measured from the test object.

The classifier stage consists of a mean-squared error template matching classifier
design to reject man-made confuser false alarms and identify the remaining targets. The
reference templates for the MSE classifier are constructed by first normalizing the training
images. Normalization begins by converting the magnitude image pixel to a dB value. Then
thresholds are determined to eliminate all but the brightest and dimmest 1.5% of the pixels.
The resulting image consists only the bright target pixels and the dim shadow pixels. A
binary mask is then generated for the image and is morphologically processed to group all
of the target and shadow pixels together. The pixels in the original dB image not part of the
binary mask are used to determine the mean dB clutter level µc. The training image is then
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normalized by removing the average clutter level

Ri = Ui − µc. (3.336)

The normalized image has the average clutter level removed, but the energy of the target in
relation to the clutter in the background is maintained. The images are then chopped with a
window slightly larger than the target to remove the influence of clutter in the templates.

The pattern matching process begins with the normalization of the ROI chip by the same
procedure outlined above. Then the MSE is calculated by

ε =

SN
i=1 (Ri − Ti)2

N
(3.337)

whereN is the number of pixels in the reference template and Ri and Ti are the pixel values
in the reference template and test image respectively. The reference template is also slid
a small amount over the test image in the calculation of a minimum MSE to make up for
any small centroid errors. The normalization scheme causes the error measured to equal the
difference of total energy between the reference template and the test image.

3.2.3.2 Implementation MATLAB code was developed to approximate the classifier
stage for the Lincoln Laboratory baseline ATR. The first two stages were not implemented
due to the fact that they were unnecessary for the experiment. The detector stage is used to
identify ROI and the discriminator stage is used to remove clutter false alarms. Since all
tests were done using MSTAR target chips or Xpatch simulations of targets, all data were
already formed into data chips and contained no clutter. The code was verified and then the
parameters of the code changed to maximize performance.

The MATLAB code developed for this algorithm utilized many of the same functions
that were used in the template ATR MATLAB code. All of the data handling functions were
reused in this ATR implementation. The database generation, and performance evaluation
were identical and the template formation and mean squared error subparts were identical
except for a few small differences.

The largest difference between the two algorithms was the image normalization used
in the template formation and mean squared error subunits. The normalization began with
removing all but the brightest and dimmest 4% of the image pixels. The 4% value was
used instead of 1.5% because the paper used images that were much larger. The selection of
pixel values was performed by first using the sort command in MATLAB to organize the
pixels from largest to smallest value. Then it was simple matter to remove the brightest and
dimmest pixels using the find command. A binary mask was then created using these pixels.
The binary masks for each image were plotted and it was determined that morphologically
processing the mask gave very little increase in performance because the target and shadow
pixels were extremely well grouped. The mean of the pixels not under the mask were
calculated and subtracted from the original image.

The only other difference in the code was difference in the get_sig function. The image
obtained was converted into a dB image in this function instead of quarter powering the
image.
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3.2.3.3 Verification The verification of the Lincoln Laboratory ATR system was
intended to be done by re-performing the first experiment in the paper [30] . The classifier
in the paper was constructed with 72 templates for each target spanning an azimuth angle of
5 degrees for each target in the training set. The training target set include 9 target types

Model BMP–2 M2 T–72 BRT–60 BTR–70 M1 M109
Serial No. 9563 132 c71

Model M110 M113
Serial No.

(3.338)

The algorithm was then tested using the 18 vehicles in the test set.

Model BMP–2 BMP–2 BMP–2 BRT–60 BTR–70 M109
Vehicle #1 #2 #3

Serial No. 9563 9566 c21 c71

Model M110 M113 M1 M2 M2 M2
Vehicle #1 #2 #3

Serial No.
(3.339)

Model M548 T–72 T–72 T–72 HMMW M35
Vehicle #1 #2 #3

Serial No. 132 812 s7

Unfortunately, many of the data sets are restricted. As of now, the data was not available to
conduct the verification.

3.2.3.4 Optimization To optimize the algorithm, a number of properties were varied
in the algorithm to obtain the maximum performance of the algorithm using a test set that
contained targets imaged at a different depression angle than the training set, along with
confusers and different versions of vehicles. The same sets of training (3.326) and testing
(3.327) data are used.

The first parameter to be varied was the size of the template. The first step was to
generate a baseline result using a template size of 80–by–80, which all other results could be
compared.

Lincoln Laboratory ATR: 8% Pixels used

Template (80–by–80) BMP–2 T–72 Unknown
BMP–2#1(196) 164 16 16
BMP–2#2(195) 144 30 21
BMP–2#3(196) 156 25 15
T–72#1(196) 18 166 12
T–72#2(195) 37 133 25
T–72#3(191) 25 139 27
BTR–70(196) 105 40 51

(3.340)
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Then a run was performed using a template size of 48–by–48 and the results recorded.

Lincoln Laboratory ATR: 8% Pixels used

Template (48–by–48) BMP–2 T–72 Unknown
BMP–2#1(196) 163 16 17
BMP–2#2(195) 155 19 21
BMP–2#3(196) 162 11 23
T–72#1(196) 16 171 12
T–72#2(195) 21 150 24
T–72#3(191) 21 148 22
BTR–70(196) 113 34 49

(3.341)

The decrease in template size allowed better identification for each target in the test set. The
size of the template was then decreased to 32X32 and the best result was recorded.

Lincoln Laboratory ATR: 8% Pixels used

Template (32–by–32) BMP–2 T–72 Unknown
BMP–2#1(196) 175 6 15
BMP–2#2(195) 165 7 23
BMP–2#3(196) 161 7 28
T–72#1(196) 7 182 7
T–72#2(195) 16 157 22
T–72#3(191) 13 157 21
BTR–70(196) 106 34 56

(3.342)

All following tests were conducted using a template size of 32X32.
The second parameter to be varied was the percentage of pixels used to generate the

binary mask. The first experiment conducted was to increase the number of pixels used to
16%.

Lincoln Laboratory ATR: 16% Pixels used

Template (32–by–32) BMP–2 T–72 Unknown
BMP–2#1(196) 176 5 15
BMP–2#2(195) 164 7 21
BMP–2#3(196) 161 8 27
T–72#1(196) 7 182 7
T–72#2(195) 16 157 22
T–72#3(191) 12 158 21
BTR–70(196) 108 32 56

(3.343)

The result was a very slight degradation of performance. Then a run was performed using
only 1.5% of the pixels.

Lincoln Laboratory ATR: 1.5% Pixels used
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Template (32–by–32) BMP–2 T–72 Unknown
BMP–2#1(196) 163 17 16
BMP–2#2(195) 144 30 21
BMP–2#3(196) 156 25 15
T–72#1(196) 18 167 11
T–72#2(195) 37 133 25
T–72#3(191) 23 140 28
BTR–70(196) 105 40 51

(3.344)

This showed a large degradation in performance. The original value of 8% seemed to have
the best performance and used for all other tests.

3.2.4 Conditionally Gaussian ATR Algorithm – Baseline Algorithm 3

The conditionally Gaussian approach to SAR ATR uses a stochastic signal to model the
received radar signal [33] . The stochastic model attempts to model the target accurately
while capturing the variability of SAR target imagery due to obstruction, orientation, or
variation of vehicle type. Therefore in theory the conditionally Gaussian ATR approach
should be able to accurately classify targets which show significant differences in range
profile than those used in training the set.

3.2.4.1 Algorithm Description The radar return is modeled as a complex Gaussian
random process, which can represented by:

r = s(θ, a) +w. (3.345)

The signal part of the radar return s(θ, a) which represents the characteristics of the imaged
scene is modeled as a complex Gaussian random vector that is dependent of target type a
and target orientation θ. The conditional mean and covariance are denoted by µ(θ, a) and
K(θ, a) respectively. The last part of the radar return w represents the noise component
of the received signal and is modeled as complex Gaussian noise having zero mean and a
covariance matrix equal to N0I. The overall mean and covariance of the radar return can be
easily calculated to give:

E {r|θ, a} = µ(θ, a) (3.346)

E {(r − µ)(r − µ)∗|θ, a} = K(θ, a) +N0I.

The stochastic model derived above can be simplified even further. First the noise component
w is assumed to be independent of signal s and spatially invariant. Furthermore, the signal
s is assumed spatially invariant and is the function of only for the given target type a and
orientation angle θ as well as the variance of each pixel. From the work done by O’Sullivan
using HHR and SAR data [33] , each pixel of the signal s of the target is well modeled as
having zero mean µ(θ, a) = 0. These assumptions can be used to yield a diagonal covariance
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matrixK which then leads to the log–likelihood function of

l(r|θ, a) =
[
i

�
− ln (Ki,i(θ, a) +N0I)− |ri|2

Ki,i(θ, a) +N0I

�
(3.347)

which is summed over all of the pixels.
The above derivation shows that the only unknown values and hence the values which

need to be estimated from the training data are the variances of each pixel. First the
assumption is made that the variance of each pixel is nearly constant within small intervals
of orientation angle θ. Therefore the training database can be divided intoNw windows with
each spanning an interval of azimuth angle d radians wide. The kth window is centered at
θk =

2π
Nw
k. The kth window interval of azimuth values that each pixel is trained is given by

Wk =

�
2π

Nw
k − d

2
,
2π

Nw
k +

d

2

�
. (3.348)

Now the variance of the ith pixel for target class al at pose angle θk can be found using

σ2i (θk, al) =
1

Nk

[
θ∈Wk

|ri(θ, al)|2 for 1 ≤ k ≤ Nw, (3.349)

where Nk is the number of training images within the window of intervalWk and 1 ≤ l ≤ t
with t equal to the number of targets in the training data base. Because the estimated variance
is unbiased due to the fact the mean is assumed to be zero. In other words, if every pixel is
assumed to have zero mean, the variance of a pixel at a specified location is simply the mean
of the squared magnitudes of all the pixels in that location of all the training images within
the azimuth window intervalWk.

The classification of the ROI is performed using a Bayesian approach by selecting the
target class a(r), which maximizes

P (a|r) ∝ P (r|a)P (a). (3.350)

In our problem set up, we need to maximize

P (a|r) ∝ P (r|θ, η, a)P (θ|a)P (η|a)P (a) (3.351)

where θ is the orientation of the target and η is the location of the target. If we treat the
orientation of the target θ and the location of the target η as nuisance variables, we can
integrate over all possible orientations and locations to obtain the correct result. With
the approximation of covariance function σ2i (θk, al) is a piecewise constant in θ ∈ Wk,
the probability density function P (r|θk, ηj , a) is approximated as piecewise constant in
orientation θk and location ηj . The Bayesian estimate of target type over all possible
orientation and location becomes

â(r) = argmax
a

[
k

[
j

P (r|θk, ηj , a). (3.352)
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3.2.4.2 Implementation MATLAB code was generated to approximate the conditionally
Gaussian ATR model presented in the article [33] . The code was verified, and then
parameters of the code were changed to maximize the performance of the code.

The MATLAB code developed for this algorithm utilized many of the same functions
that were used in the template ATR code. All of the data handling functions were reused in
this ATR implementation. The database generation was identical.

The training algorithm was performed using the function train_gauss. The first step of
the training was to convert the matrix form of image into a column vector. Using all of the
column vectors that represent the training images in the given azimuth window Wk, the
variance of each pixel is calculated by the simplification that the variance is equal to the
mean of the squared pixels in the training group. The variance at each pixel location is then
stored in a variance vector identified by V (θk, al) from which will be used as the dictionary
for identification.

The testing part of the algorithm is performed by the test_gauss function. The test_gauss
function first converts the test image into a single column vector. The test and training
vectors were assumed to be well registered with each other and no shifting was performed.
This assumption was well founded since only MSTAR and XPACTH data was used. Then
using the normpdf MATLAB function calculates the probability values of each test pixel
value using the zero mean Gaussian distribution function with the variances from the
variance vector V (θk, al) in the training set. For each given variance vector in the training
set, the probability of each pixel in the test image is calculated and all of the probability
values of the test image are summed and normalized. The process yields one summed and
normalized probability value for each variance vector in the training set (for all k3s and l3s).
The identification of the target is performed by the score_gauss function, which assigns the
test image the identification al of the variance vector in the training set with the maximum
summed and normalized probability value.

3.2.4.3 Verification The verification of the conditionally Gaussian ATR method was
done by reperforming the author’s baseline experiment under what was called standard
operating conditions [33] . The baseline experiment used image size of 80–by–80 with
Nw = 72 orientation windows trained with an overlapped azimuth spanning interval of
d = 10◦. The training data set consisted of four target types obtained from the publicly
released MSTAR data set with two the target types consisting of multiple vehicle types all
imaged at a depression angle of 17◦.

Training Set
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Model Vehicle Serial No. Depression angle No. of Images
BMP–2 #1 9563 17◦ 233

#2 9566 17◦ 231
#3 c21 17◦ 233

T–72 #1 132 17◦ 232
#2 812 17◦ 231
#3 s7 17◦ 228

BRDM–2 #1 E–71 17◦ 298
BTR–70 #1 c71 17◦ 233

(3.353)

The testing set consisted of the same vehicles imaged at a depression angle of 15◦.

Testing Set

Model Vehicle Serial No. Depression angle No. of Images
BMP–2 #1 9563 15◦ 195

#2 9566 15◦ 196
#3 c21 15◦ 196

T–72 #1 132 15◦ 196
#2 812 15◦ 195
#3 s7 15◦ 191

BRDM–2 #1 E–71 15◦ 263
BTR–70 #1 c71 15◦ 196

(3.354)

The algorithm was tested and compared to the author’s result.

Author’s result [33]

BMP–2 BRDM–2 BTR–70 T–72
BMP–2(587) 581 0 0 6

BRDM–2(263) 6 243 0 14
BTR–70(196) 7 0 186 3

T–72(582) 0 0 0 582

(3.355)

Our result
BMP–2 BRDM–2 BTR–70 T–72

BMP–2(587) 578 0 2 7
BRDM–2(263) 6 243 1 15
BTR–70(196) 8 0 185 3

T–72(582) 2 0 0 580

(3.356)

The verification shows that our algorithm is in good agreement with the one presented in the
paper.

3.2.4.4 Optimization To optimize the algorithm, a number of properties were varied
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in the algorithm to obtain the maximum performance of the algorithm using same test set
(3.327) that contained targets imaged at different a different depression angle than the
training set (3.326) along with confusers and different vehicle versions.

The first parameter to be varied is the size of the image used. The first step was to
generate a baseline result which all other results could be compared. In this run, the data was
assumed to have zero mean, and used an image size of 48–by–48 which was the image size
the author reported having the best results [33] .

Conditionally Gaussian ATR: 48–by–48

Zero Mean BMP–2 T–72 Unknown
BMP–2#1(196) 180 0 16
BMP–2#2(195) 169 9 17
BMP–2#3(196) 159 20 17
T–72#1(196) 1 172 23
T–72#2(195) 13 152 31
T–72#3(191) 10 169 12
BTR–70(196) 107 84 5

(3.357)

A run was first performed using a template size of 32–by–32 and the results recorded.

Conditionally Gaussian ATR: 32–by–32

Zero Mean BMP–2 T–72 Unknown
BMP–2#1(196) 184 0 12
BMP–2#2(195) 169 13 13
BMP–2#3(196) 185 6 5
T–72#1(196) 1 170 25
T–72#2(195) 13 140 42
T–72#3(191) 18 154 19
BTR–70(196) 143 52 1

(3.358)

The results from a decrease in template size obviously gave worse results. A run of the data
was then performed using an image size of 64–by–64, and the results recorded.

Conditionally Gaussian ATR: 64–by–64

Zero Mean BMP–2 T–72 Unknown
BMP–2#1(196) 192 0 4
BMP–2#2(195) 157 12 26
BMP–2#3(196) 169 10 17
T–72#1(196) 1 192 3
T–72#2(195) 52 93 50
T–72#3(191) 50 125 16
BTR–70(196) 97 70 29

(3.359)
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The results of the experiment clearly show that image size of 48–by–48 is optimal.
The last parameter varied in the optimization was the assumption that the SAR imagery

data is well modeled having zero mean. A run of the data was conducted where the mean the
pixel values were calculated.

Conditionally Gaussian ATR: 48–by–48

Calculated Mean BMP–2 T–72 Unknown
BMP–2#1(196) 192 1 3
BMP–2#2(195) 162 10 23
BMP–2#3(196) 148 27 21
T–72#1(196) 2 192 2
T–72#2(195) 18 136 41
T–72#3(191) 19 146 26
BTR–70(196) 77 69 50

(3.360)

The zero mean assumption gave surprisingly good results and better than actually calculating
the mean. This result is still puzzling.

3.3 Experimental Paradigm and Preliminary Test — A Road Map for
Future Study

Even though, the literature search turned out very little work having been done in SAR
parametric study for ATR, every ATR work showed good performance only under fixed set of
SAR image parameters. The ATR algorithms were always trained and tested under the same
or very similar sensor OC’s. Their performance has the tendency being degraded severely as
soon as the SAR image sources from different sensor or sensor OC’s are applied. As you go
through the SAR image formation algorithms and various assumptions made on the sensor
parameters in the Brief section, you can realize the significant effects of SAR parameters
and imaging algorithms on the appearance (pixel values) of SAR images. Independent of the
underline ATR techniques such as model based, template matching, stochastic, etc., all ATR
algorithms will be affected by the variations in sensor OC’s as long as they are image based
(using SAR images as the observation data source). Inconsistency in the data observation
under various sensor OC’s will unavoidably cause degradation in target classification.

In order to understand the level of significance of the effects of the sensor OC’s on
ATR performance, we need to set up an experimental paradigm to test various sensor OC’s
and their combinations. Now we have established a limited baseline ATR algorithms and
surveyed the availability of existing data sources for parametric study. The next component
of the experimental paradigm is to decide the choice of which sensor OC’s should be
investigated in the experiment. Although the lack of any real research into the effects
of sensor OC would imply any group of sensor OC’s would suffice, we chose to study a
few of the sensor OC’s that seem more likely to produce the largest effects on SAR ATR
performance and likely to be properly modeled. Plus, the combinations of those sensor OC’s
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will create a larger dimensional problem to study.

3.3.1 SAR Sensor Parameters for Further Study

The depression angle that the sensor forms with the imaging plane will be evaluated in the
preliminary experiment. The depression angle is the sensor OC that determines how the
projection of the real 3-D object to the 2-D SAR image plane will be formed. Although
the effects of depression angle is the only sensor OC to be investigated in most SAR
ATR algorithms, the evaluations of depression angle is done using MSTAR data where
the depression angle is only varied a few degrees. The depression angle is a relatively
independent sensor OC which has very little interaction with other sensor OC’s. In most of
SAR image algorithms, depression angle is dealt with at the beginning of the process to form
a slant plane. Therefore, it is easy to model and simulate. The depression angle has great
effects on SAR image appearance and so as the performance of ATR.

The frequencies of the radar pulse used by the sensor to collect SAR imagery will
be evaluated in the preliminary experiment. The choice of frequency and bandwidth of
a radar pulse is one of the most important characteristics of the sensor. Although the use
of simulated data will not allow an investigation of the effects of foliage obstruction and
FOPEN radar, the effects of frequency and resolution of complex objects can be investigated.
The frequency and bandwidth of radar pulse is relatively simple to model. The simulation
using Xpatch can generate radar response signals with wide frequency range. However,
frequency and bandwidth have complicated interactions with the assumptions made in the
SAR image formation algorithms. Some cares have to be taken in SAR image formation
algorithms to handle the frequency and bandwidth variations.

The polarization of the radar pulse used by the sensor to collect SAR imagery will
also be evaluated in the preliminary experiment. The polarization of the radar wave will
determine some of the scattering characteristics of the incident waves on the complex
object and hence extremely important in the formation of the SAR image. The effects of
polarization on SAR ATR algorithms have not been covered in depth in any previous study.
Polarization is easy to model and relatively independent of other sensor OC’s.

The noise level in the received SAR image will also be evaluated in our preliminary
experiment. Noise level in our SAR imagery can be easily manufactured in our simulated
data by randomly changing pixel values in our image to a random number obtained from
a Rayleigh distribution which models speckle. The experiment should provide valuable
information for future development of ATR algorithms.

The sensor OC’s of squint angle, type of antenna (beamwidth, resolution, footprint)
and synthetic aperture length are closely related in SAR image formation algorithms.
Any change on one parameter will affect the selection of others in the image formation
algorithms. Many assumptions and approximations of parameters in the image formation
algorithms have to be changed to reflect the sensor OC’s. The type of antenna which will
affect the radar beamwidth, resolution and footprint is a very hard to model sensor OC and
very expensive to come up with real data to cover the variation of radar antenna types. The
variations of radar beamwidth, resolution and footprint can not be simulated in Xpatch.
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Therefore, we will leave the antenna out of the parametric study. This is usually not a big
issue, due to the ATR is almost never performed cross the data from different kinds or radar.
Squint angle and synthetic aperture length can be modeled in the Xpatch simulation and SAR
image formation algorithms. They are connected with SAR operation modes like stripmap
vs. spot and single vs. multi-look. All of these sensor OC’s can be modeled in simulation
however they all have close association with each other in SAR image formation algorithms.
They are required to be studied together with a limited sets realistic OC constrains that can
be derived from real SAR sensor systems or from prior publications of those subjects.

3.3.2 Preliminary Experiments on Available Public Data

Although public SAR imagery is limited, there existed only enough data to perform one
preliminary experiment on the variations of depression angle sensor OC. A subset of the
MSTAR data contained targets imaged at depression angles of 15◦ and 45◦. The targets
consisted of T72_A64, BRDM-2, ZSU_23_4 and 251. Each baseline ATR algorithm was
trained using the all targets imaged at 15◦ (no confusers) and then tested using the images
formed using the depression angle of 45◦. All the baseline algorithms ran on their optimized
parameter settings.

Template Matching Algorithm

303 Chips 251 T72_A64 BRDM-2 ZSU_23_4 Unknown
251 53 143 52 1 54

T72_A64 0 234 69 0 0
BRDM-2 0 172 131 0 0

ZSU_23_4 155 58 10 13 67

(3.361)

Lincoln Lab. ATR Algorithm

303 Chips 251 T72_A64 BRDM-2 ZSU_23_4 Unknown
251 26 121 108 0 48

T72_A64 0 184 100 0 19
BRDM-2 0 181 98 0 24

ZSU_23_4 57 90 98 28 30

(3.362)

Conditional Gaussian Algorithm

303 Chips 251 T72_A64 BRDM-2 ZSU_23_4 Unknown
251 234 13 0 3 53

T72_A64 28 271 0 0 4
BRDM-2 21 281 0 0 1

ZSU_23_4 130 29 0 71 63

(3.363)

As expected, none of the baseline ATR algorithms perform satisfactorily on the data sets
imaged at such large difference in depression angles.
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3.3.3 Simulated Data Generation using Xpatch

The lack of available data across the sensor OC dimension combined with the expense
of generating real data has lead us to the generation of simulated data using Xpatch. For
the experiment we will need data consisting of several targets with variation in frequency,
polarization, depression angle, and artificially with noise level. The target set consists of
three high definition CAD models which were obtained from the USAF. The cad models
consist of a BMP, T-72, and a BTR-70.

The parameters for the Xpatch simulation were set up to provide results which provide
the most ‘‘raw’’ information possible while trying to mirror the MSTAR data collection.
Each simulation was set up to collect a series of individual range profiles over the synthetic
aperture in the frequency domain rather than allowing Xpatch to automatically generate
the SAR image. Although this action had the effect of increasing the simulation time from
10 hours to generate one image to over 100 hours, it provides more accurate information,
and allows us to use different image formation and weighting algorithms with different
parameter such as synthetic aperture length. In order to decrease the amount of simulated
data generated, it was decided that only a few azimuth angles were needed for each target
over each sensor dimension. The data set will contain each target imagined at center azimuth
angles of 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦. This will allow images of the target from
the front to back while eliminating essentially the same images because of the symmetry of
the target.

The depression angle data will be collected from 20◦ to 45◦ in 5◦ increments. The data
will be simulated trying to mirror the MSTAR collection. The simulation will be done using
a center frequency of 9.6 GHz (X-band) with a bandwidth of 0.5 GHz providing 11.8 inches
of resolution. The synthetic aperture has an integration angle of 2.9842◦ which provides a
resolution of 11.8 inches in cross range which gives square resolution pixels.

The frequency data will be simulated from 1 GHz to 10 GHz in 1 GHz increments.
Although originally the frequency bandwidth was intended to be much larger, the longer
simulation time which would be required because of the necessity to use exact solvers at low
frequencies instead of the high frequency approximations constrained the frequency range
and kept it in the GHz range. The simulation will be set up to keep the keep the square 11.8
inch resolution pixels for each frequency range. This implies integration angle will increase
from 2.9842◦ at 10 GHz to 29.842◦ at 1 GHz. The bandwidth of the signal will remain at 0.5
GHz for each data collection.

The data simulated so far consists of the T-72 and BMP at azimuth angles of 0◦, 30◦,
60◦, 90◦, 120◦, 150◦, and 180◦ at the depression angles of 30◦, and 35◦ at 9.6 GHz. There
was also a collection of the BMP at 30◦ depression angle at 1GHz for azimuth angles from
0◦ to 360◦. The data simulation is continuing as planned. We expected to finish the initial
data simulation in May 2003 and some experiments will be conducted after that.

3.3.4 SAR ATR Parametric Experimental Platform

This section provides an explanation of proposed SAR ATR parametric experimental
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platform shown in figure (2). In this platform, we have already invested a SUN workstation
equipped with Xpatch and the detailed target CAD models obtained from the Air force. This
investment is located at an ITAR facility, 023 of Russ Engineering Center at Wright State
University. This facility provides us the capability of generating simulated raw radar range
profile data or SAR images under various sensor parameters such as depression angles,
radar frequencies, polarization, squint angle, stripmap and spot mode, etc. To generate
raw radar range profile data gives us some flexibility to vary some of the sensor OC’s in
SAR image formation algorithms or vary the image formation algorithm itself. The next
piece in the platform is the image distance metric to quantify the image differences for the
SAR images generated under different sensor OC’s. SAR Image is an information source
with multiple characteristics and those characteristics will have different impacts on the
performance of ATR algorithms. For example, the statistic information of the image pixels of
the SAR image will play an important role in the baseline ATR algorithms using conditional
Gaussian method. And the patterns of the SAR image may have greater effects on the
template matching ATR algorithm. Therefore, a number of image distance metrics will be
used in the platform: Energy, Statistic Information, Pattern and other Features. We have
already established three baseline ATR algorithms. The list can be expanded if some other
significant ATR algorithms with sufficient implementation information would be available.
The standard ATR summary performance measures [38] such as: Detection Probability
(Pdet), Probability of False Alarm (Pfa), Identification Probability (Pid), and Correct
Label Probability (Pcl), etc. will be used to compare the performance of the ATR algorithms
under various sensor OC’s. At the same time, the SAR images generated under different
sensor OC’s are compared with the combinational scores using the distance metrics. Some
correlation between the scores from these two scoring systems can be established for all
the SAR image based ATR algorithms. We believe this SAR ATR parametric experimental
platform can greatly aid the study of effects of SAR sensor OC’s on the performance of SAR
image based ATR algorithms.
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Chapter 4
Conclusion
In this document, we first provided a brief introduction to the SAR sensor parameters and
their functions in the SAR image formation algorithms. We have also discussed various
assumptions and approximations made inside the SAR image formation algorithms. In this
study, we have performed a complete literature survey on the prior works in SAR ATR
parametric study. We concluded that though there were some studies on the SAR parameters
and their behavior in the SAR image formation algorithms. Little has been done towards the
ATR algorithm performance. The one of the most important reasons for the lack of study
in this area is the lack of proper SAR image data with a complete spectrum of the sensor
OC’s variations. Also in the course of study, we found there were no agreeable baseline
ATR algorithms for the ATR performance evaluation study. In order to establish a set of
baseline ATR algorithms, we discovered three existing ATR algorithms with different target
classification techniques. In this project, we have implemented, verified and optimized the
ATR algorithms using Matlab with the data from MSTAR database. The established baseline
ATR algorithms are documented in this report for future ATR performance evaluation. In the
searching for the available real SAR image data with variations in sensor OC’s, we found, as
expected, nothing significant. Due to the lack of real experimental data, it leads us to explore
the possibility of generate simulated SAR data with various assumed sensor OC’s. We have
set up an ITAR facility at our location for this purpose with the investment from Wright State
University. The facility has the capability of generating SAR range profile or image data
under various sensor OC’s using Xpatch. The initial data simulation is planned in this study
and currently the first phase of data simulation is being carried out. The first phase of data
simulation is intended to cover sensor OC’s in depression angle, frequency, polarization,
noise, synthetic aperture length, and SAR image formation algorithms. In carrying out data
simulation, we found that the simulation on a complex target under one set of sensor OC
took very long time (hundreds hours) to run. And we need multiple set of sensor OC’s to
evaluate any ATR algorithm. Therefore, the data simulation is an on–going process and the
results will be reported to Air force engineers in the future (this part is not a task in the
original proposal anyway). To point out the roadmap for the future study in this area, we
also developed a SAR ATR parametric experimental platform which has all the components
for conducting SAR ATR parametric study. We conducted a preliminary experiment for the
depression angle variation on the baseline ATR algorithms using the only real SAR data
available from MSTAR database. The preliminary experiment is to illustrate the evaluation
process. As we expected, the experiment showed that all the baseline ATR algorithms failed
to yield usable confusion matrix at such large depression angle variations. As conclusion, we
have fulfilled the objectives of this study only to discover more research needs to be done
for the future studies in this area.
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